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Abstract. Bloom filters are probabilistic data structures which permit to conve-
niently represent set membership. Their performance/memory efficiency makes
them appealing in a huge variety of scenarios. Their probabilistic operation, along
with the implicit data representation, yields some ambiguity on the actual data
stored, which, in scenarios where cryptographic protection is unviable or unprac-
tical, may be somewhat considered as a better than nothing privacy asset. Oddly
enough, even if frequently mentioned, to the best of our knowledge the (soft)
privacy properties of Bloom filters have never been explicitly quantified. This
work aims to fill this gap. Starting from the adaptation of probabilistic anonymity
metrics to the Bloom filter setting, we derive exact and (tightly) approximate for-
mulae which permit to readily relate privacy properties with filter (and universe
set) parameters. Using such relations, we quantitatively investigate the emerging
privacy/utility trade-offs. We finally preliminary assess the advantages that a tai-
lored insertion of a few extra (covert) bits achieves over the commonly employed
strategy of increasing ambiguity via addition of random bits.

1 Introduction

A query to scholar.google.com reveals that (almost literally!) a myriad of papers have
employed Bloom filters or their extensions in a variety of largely diverse scenarios.
This is all but a surprise. Bloom filters are compact and computationally efficient - O(1)
- probabilistic data structures devised to conveniently permit membership queries, and
provide straightforward support for set operations such as union, intersection, inclusion,
etc. Invented in 1970 [1] for spell checking, they have found several applications in
database systems since the beginning of the eighties [2–5], and, more recently, they have
been applied to a variety of networking scenarios [6], collaborative P2P and distributed
computing systems [7, 8], genomics [9], and so on.

A Bloom filter is an array B[.] of m bits. Data, in most generality treated as a string
(e.g. a name, an email, an IP address, etc), is encoded in the filter by taking k hash
functions having digest within the filter size m, and by setting the relevant positions
in the bit array B[.]. In order to query if a data item is stored in the filter, it suffices
to check whether all the k hash functions, taken over the considered data, point to bits
set to 1 in the filter. In Bloom filters, false positive may occur when a query for a data
not originally stored in the filter nevertheless “hits” all bits already set to 1. The false
positive probability is the price to pay for space/time efficiency, and in any case can be
easily controlled by suitably designing the filter parameters m and k.



Privacy with Bloom filters. Actually, there are several scenarios where the implicit
representation of the stored data, and the false positive’s ambiguity of a Bloom filter’s
response, may be considered an asset rather than an annoyance. For instance, Alice is a
social network subscriber whose list of friends is made public through a Bloom filter1.
Alice may feel her privacy to be somewhat protected (taking aside, for the moment,
whether this is true or not) by two apparent “facts”. First, Alice’s list of friends is not
provided in clear text. Hence, the only way to ascertain whether a specific person, say
Ernest, is in her set of friends is to explicitly query for him in the Bloom filter. Second,
even if a query for Ernest returns a positive answer, Alice can deny that this is the case,
blaming a false positive.

In practice, the protection offered by the first “fact”, namely the implicit data rep-
resentation due to one-way hashing, is questionable in the sheer majority of real-world
scenarios, and more precisely when the universe set is easily enumerable. An attacker
armed with sufficient computational capability to enumerate the entire universe set may
perform a check on each possible element, and thus reconstruct the filter’s content, be-
sides the ambiguity due to false positives. Indeed, the cases in which enumeration is
not feasible are the exception, rather than the norm. When used to store IP addresses, a
Bloom filter enumeration would take 232 checks, a far from prohibitive number; Face-
book, the world’s largest social network, totalizes as of today about 900 million ac-
counts, less than 230, and the same magnitude applies to US 9-digit social security
numbers. And, at last, an attacker may exploit side knowledge to dramatically narrow
down the “Candidate Universe set” to explore within2.

Whenever a Bloom filter must come along with strong privacy protection, crypto-
graphic extensions are available [10–14]. However, these solutions bring about the bur-
den of distributing and/or managing relevant cryptographic material (e.g., keys), which
hence restrict their usability. So, when a cryptographic scheme is unviable or incon-
venient, and enumeration attacks are feasible, we are left with just the second above
mentioned “fact”, namely the ambiguity given by the false positives as a soft, better
than nothing, form of privacy protection.

Quite surprisingly, at least to the best of our knowledge, no prior work appears to
have addressed the very natural emerging question: can we quantify the privacy preser-
vation capabilities of a standard Bloom filter?

False positives or hiding set size? Actually, as shown in the remainder of the paper,
such a quantification is not difficult, but requires some minimal attention in avoiding
pitfalls, some obvious, some perhaps more subtle. Assume that a Bloom filter contains
n elements, and its parameters are set so as to accomplish a false positive probability

1 As indeed done in a former social network called LOAF, today not anymore active.
2 For instance, despite the 900 million Facebook total accounts, an attacker can restrict enumer-

ation to a target country (e.g. countries such as Austria or Ireland have slightly more than 2
million accounts each) or city. Similarly, before the “Social Security Number randomization”
introduced on June 25, 2011, the first three out of the 9 SSN digits had geographical signifi-
cance, and thus queries for citizens in a given geographical region would have trivially reduced
to an universe set smaller than one million.



ψ. It is straightforward to see that, by itself, ψ is not, alone, an appropriate metric to
measure privacy.

Indeed, roughly speaking, privacy stems from the inability of an attacker to distin-
guish an element out of the n stored in the filter, from elements that appear inserted, but
which are not. But the number v of such elements, which we descriptively refer to as
hiding set, not only depends on the false positive probability, but also on the size Nu of
the (Candidate) Universe set through the obvious (average) relation v = (Nu − n) · ψ.
For instance, compare two filters A and B including n = 100 elements each, and hav-
ing false positive probabilities set to ψA = 10% and ψB = 1%, respectively. If the
universe sets have different size, say Nu,A = 1600 and Nu,B = 20100, then filter B
may exhibit a larger hiding set than A despite the much smaller false positive (in the
example, vA = 150 versus vB = 200). In essence, we can conclude that, as in the
case of utility [15], also in the case of privacy the cardinality of the universe set plays a
crucial role in combination with the filter’s false positive.

It could then be argued that the cardinality of the hiding set might be considered
as a suitable privacy metric. This is closer to the truth, but in a quite subtle way. In-
deed, consider for instance a filter having an hiding set whose cardinality is twice the
number of inserted elements. This could roughly suggest that the elements in the set
are 3-anonymous (two “covert” false positive elements for each true filter’s element,
following K-anonymity definition [16]). However, we will show that, in such setting,
up to one third of the elements won’t be anonymous at all!

Our contribution. The contribution of this paper is threefold. i) We introduce privacy
metrics suitable for Bloom filters. Specifically, we cast the K-anonymity model [16]
in its probabilistic acceptation [17], to the Bloom filter setting. For the case K=2, we
give a dedicated name, γ-deniability (equivalent to our more general definition of γ-2-
anonymity), and treatment, as we believe it is of particular interest in several practical
applications. ii) We quantify, with both exact and tightly approximated formulae, γ-
deniability and γ-K-anonymity. We leverage such metrics to determine to what extent a
standard (optimized) Bloom filter configuration yields privacy performance, and which
(very limited) room a filter designer has in exploiting suboptimal configurations (for
a same false positive target) for improving privacy. iii) As it ultimately appears that
substantial privacy improvements may be accomplished only by increasing the hiding
set size, we investigate, using a preliminary heuristic, the advantages that a tailored
insertion of supplementary filter bits may accomplish with respect to the customary
practice of adding random bits.

1.1 Related Works

Bloom filters and their several modifications have been deeply studied and applied in
many scenarios. Broad surveys are available [6, 8], tackling both their basic design as-
pects as well as their widespread application.

Cryptographic extensions of Bloom filters have emerged in Private Information
Retrieval and Searchable Encryption. Designs target strong privacy requirements, at the
price of key management for querying and/or constructing the Bloom filter index. Cryp-
tographic techniques employed are many: trapdoors in the Bloom filter’s hash functions



[12]; composability of the Pohlig-Hellman cipher [10, 11]; blind signatures and oblivi-
ous pseudorandom functions [13]; Boneh-Goh-Nissim public key encryption [14]; etc.

Several scenarios employ plain Bloom filters to exchange private information.
In several cases, privacy is not quantified, but is generically mandated to the Bloom fil-
ter one-way hashing with limited further argumentation [18–20] (although in this latter
work a large universe set is mentioned). In other cases, such as [21], privacy is accom-
plished by not admitting repeated queries (i.e., enumeration) and by setting the Bloom
filter parameters so as to achieve enough false positives. Still with reference to plain
Bloom filters, the work [22], dealing with the sharing of payload information across
Distributed Intrusion Detection systems, is among the few which somewhat quantify
privacy, although this is done indirectly, through the quantification of the large universe
set involved in the specifically considered application, and the large number of possible
n-grams per filter bit.

Some works use Bloom filters but introduce supplementary non cryptographic
procedures to improve their privacy level. This is the case of [23], which proposes
to index documents from multiple providers organized into disjoint privacy groups,
and devises an iterative procedure which uses randomized Bloom filters to produce a
privacy preserving index. Another approach, proposed in [24], consists in splitting a
Bloom filter into segments distributed across multiple participants; it is suggested that
the higher false probability in a segment improves privacy.

An attack devised to revert privacy has been described in [25]. This work ana-
lyzes an earlier proposed system [26] based on Bloom filters for string comparison in
private record linkage, and shows how to extract significant amount of private informa-
tion through a Constraint Satisfaction Cryptanalysis. Note that in some scenarios, the
ability to invert a Bloom filter comes as a functional advantage: indeed [27] proposes a
Bloom filter enhancement where extra information permits to list the complete filter’s
content with high probability.

Concerning privacy metrics specifically devised for Bloom filters we are not
aware of any prior specific work. Of course, a huge amount of papers have tackled
privacy and anonymity definitions in the much more general database setting, such as
K-anonymity [16] and probabilistic K-anonymity [17], L-diversity [28], T-closeness
[29], Differential Privacy [30], etc. In this work we cast K-anonymity, in its probabilis-
tic version, to the Bloom filter setting (with special attention to the practically more
interesting case K = 2 which we conveniently define as deniability), and we provide
explicit formulae to measure it.

2 Preliminaries

This section reviews background information on Bloom filters, formally introduces the
notion of hiding set, and derives a combinatorial balls and bins result used in the re-
mainder of the work. For the reader’s convenience, Table 1 summarizes notation.

2.1 Bloom Filters

A Bloom filter [1, 6] is a probabilistic data structure used to represent set membership.
A Bloom filter is implemented as an array B[i], i ∈ (1,m), of m bits accessed via k



Notation Meaning
BF (S) Bloom filter storing a set S
S Set of elements inserted in the filter

n = |S| number of elements inserted in the Bloom filter
m Size in bits of the Bloom filter
k Number of used hash functions

ψ(m, k, n) False positive probability for given filter parameters
U Set of elements in the universe, |U| = Nu

V Hiding set (set of false positive elements), |V| = Nv

Table 1. Used notation

independent hash functions H1(x)...Hk(x), each of which maps a string x ∈ {0, 1}∗
to one of the m bits within the bit array.

Consider a set S = {x1, · · ·xn} of n elements. We denote with BF (S) a Bloom
filter whose initially empty array is filled with all the elements x ∈ S , by repeating for
every x the following insert procedure: ∀j ∈ {1..k}, B[Hj(x)]← 1.

Querying the presence of an element x ∈ {0, 1}∗ within a Bloom filter consists of
computing ∧kj=1B[Hj(x)] (i.e., returning 1 only if all corresponding bits are 1).

In Bloom filters, false positives are possible but false negatives are not. A false
positive ψ(m, k, n) is the probability that a query performed for an element x not stored
in BF (S) returns 1, where the parameters m and k specify the Bloom filter (size of the
bit array m, and number of hash functions k), and n is the cardinality of the stored set
S. Even if an exact expression for ψ(m, k, n) is available [31], virtually all works in the
field rely on a simple, but tight, approximation (see e.g., [6] for its derivation):

ψ(m, k, n) ≈
(
1− [1− 1/m]

nk
)k
≈
(
1− e−nk/m

)k
. (1)

With the exception of the derivation in Appendix A, when computing false positive
probabilities we will thus conveniently resort to (1). Finally, in practical applications,
the Bloom filter parameters m, k are frequently optimized for a given stored set size
n, so as to minimize the false positive probability. We will briefly review the relevant
relations in Section 4, while assessing the privacy properties of optimized Bloom filters.

2.2 Hiding set

As very clearly explained in a recent paper [15], and perhaps contrarily to some prac-
titioners’ belief, a Bloom filter’s false positive probability is not the only metric which
affects performance. In several (but not all) applications, performance is fundamentally
affected by the absolute number v (versus the false positive’s fraction ψ) of elements
which appear included in the filter due to false positives, but which are not. For in-
stance, [15] discusses the specific case of Bloom filters used as cache summary, and
shows that when v gets significantly larger that the actual size of the cached set (which
may be the case when the universe set is large), the usage of a Bloom filter may even
make performance worse than when the Bloom filter is not used at all [15].

It is intuitive to expect that also the privacy properties of a Bloom filter primarily
depend on the cardinality v of the set of elements which are apparently included in



the filter, but which are not. (But we will show later on that such dependence is not as
obvious as it might seem). We thus give to such set the descriptive name hiding set.

More formally, let U , with |U| = Nu be the “Candidate Universe set”, i.e. the
Universe set at the net of the elements that an attacker may a-priori get rid by using
external information or other inference means (quantification being application specific,
hence out of the scopes of this paper). Let S = {x1, · · ·xn} be a set of n elements, and
BF (S) be a Bloom filter with sizem and k hash functions, filled with such n elements.

Definition 1. A set V is called Hiding Set for a Bloom filter BF (S) if V contains all
the elements vi ∈ U s.t. vi 6∈ S and a query for vi in BF (S) returns 1 (i.e. vi is a false
positive).

Remark 1. The number of elements in V is a random variable Nv , with (binomial)
probability distribution

P{Nv = v} =
(
Nu − n

v

)
ψ(m, k, n)v (1− ψ(m, k, n))Nu−n−v

and mean value E[Nv] = (Nu − n)ψ(m, k, n). This trivially follows from the fact that
every element in the universe set not belonging to the set S experiences an independent
false positive probability ψ(m, k, n).

2.3 Probability of non empty bins

Throughout the paper, we will make frequent use of the following combinatoric balls
and bins result.

Lemma 1. Consider u ≥ 1 bins and z ≥ 1 balls. Each ball is independently placed in
a randomly chosen bin. Let U be the random variable representing the resulting number
of non empty bins. Then U has the following probability distribution:

Uu(z;x) =

{
z
x

}(
u
x

)
x!

uz
, ∀x ∈ (1, u) (2)

and mean value

E[U ] = u

(
1−

(
1− 1

u

)z)
. (3)

The lemma is readily proven via a counting exercise3. We recall that the Stirling number
of the second kind

{
z
x

}
expresses the number of ways to partition a set of z elements

(labelled balls) into x non empty subsets (bins).
(
u
x

)
yields the number of ways in which

exactly x bins are chosen out of u total bins, and x! is the number of ways we can label
the chosen bins. Hence, the numerator in (2) provides the number of ways in which z

3 Exercise which requires a bit of care: the underlying trap is to focus on multisets counts, i.e.
unlabeled balls, and neglect the fact that multisets are not equiprobable; for instance, with
two unlabeled balls and two urns, we have three possible multisets {{∗, ∗}, {}}, {{∗}, {∗}},
{{}, {∗, ∗}}, whereas the number of equiprobable combinations is 4 (as a count on labelled
balls indeed yields).



Fig. 1. A toy example where an hiding set of same cardinality as the set truly included in the filter
does not provide any anonymity

labelled balls fall into exactly x bins out of u available ones. The probability distribution
is finally derived by dividing for the total number uz of ways to distribute z labelled
balls across u labelled bins.

The mean value (3) might be eventually derived by direct computation, recalling
that, using standard inclusion/exclusion arguments, Stirling numbers of the second kind
are expressed as {

z

x

}
=

1

x!

x−1∑
i=0

(−1)i
(
x

i

)
(x− i)z.

But of course a much more convenient direct derivation consists in exploiting the ba-
sic fact that, also for non independent random variables Xi (indeed our case below),
E [
∑
Xi] =

∑
E [Xi]. Hence it suffices to describe a single bin via the random vari-

able Xi ∈ {0, 1} which assumes value 1 when the bin is non empty; trivially note that
E[Xi] =

(
1−

(
1− 1

u

)z)
, and multiply by the total number u of bins to obtain (3).

3 Privacy metrics

In this work, unlike for instance [10–14], we are not concerned with cryptographic
extensions of Bloom filters. Hence, security/privacy requirements usually assumed in
cryptography are not applicable to standard Bloom filters. Rather, suitable privacy met-
rics should ideally cast well established non-cryptographic privacy/anonymity metrics
to the Bloom filter setting specificities.

A fairly natural starting point appears to be the notion of K-anonymity. However,
the very first idea of defining K-anonymity through the mere cardinality of the actual
stored set and the hiding set resulting from false positives is inappropriate. This is best
shown by the toy example illustrated in Figure 1: here, 3 elements x1, x2, and x3, are
actually stored in a Bloom filter with k = 3 hash functions, whereas other 3 elements,
v1, v2, v3, are false positives. Since, for each true element, there is a false positive one,
this could suggest a 2-anonymity level. But neither of the three elements x1, x2, x3 are
actually anonymous at all! Indeed, each of them is trivially identified as being the only
candidate hashing over some filter bits (the 1st, 4th and 7th, respectively).

The above example rather suggests that there seems to be a closer than expected
analogy between the Bloom filter scenario and that considered in [16], despite the fact
that, here, we are focusing on atomic data (the set of elements), whereas [16] deals with



structured data organized into tuples of attributes. Indeed, we can intuitively interpret
any element x in the universe set as being described by a tuple of i ∈ (1,m) boolean
“attributes” associated to each filter’s bit B[i]. An element x has “attribute” B[i] if
and only if Hj(x) = i for at least one j ∈ (1, k) - i.e. if an only if one of the hash
functions, if applied to the considered element x, would “hit” the Bloom filter’s bit
B[i]. It readily follows that [16]’s K-anonymity definition can be cast to the Bloom
filter case. Informally, an element x actually included in the filter is K-anonymous if,
for each of the bits B[i] “hit” by the considered element, there are at least other K − 1
elements which appear included in the filter (because of false positives), and which map
to the same filter’s bit.

This said, it is immediate to see that a deterministic K-anonymity requirement may
not always be attained. With a relatively small universe set, and a potentially large
filter size (usually designed on the basis of the false probability target mandated by
an application), the probability that a filter’s bit is “hit” by a unique element in the
whole universe set (and hence that such element may not be anonymized by any other
possible element) may be far from negligible4. Rather, probabilistic extensions [17] of
the original K-anonymity model appear more suited to the Bloom filter setting.

3.1 γ-deniability

Before taking further generalizations, we first focus on what we believe is the most com-
pelling question: to what extent an element inserted in a Bloom filter can be disclosed
via enumeration? Informally, for an element inserted in the filter, we use the descriptive
attribute “deniable” whenever the owner of the filter can deny that the element is actu-
ally stored, blaming a false positive. Since only a fraction of inserted elements may be
deniable, we resort to the following probabilistic definition.

Definition 2. An element x ∈ S inserted in a Bloom filterBF (S) is said to be deniable
if ∀i ∈ {1..k}, there exists at least one hiding set element v ∈ V , such that ∃j ∈
{1..k} s.t. Hi(x) = Hj(v). A Bloom filter configuration BF (S) is γ-deniable (or,
alternatively, we refer to such property as γ-deniability), whenever a randomly chosen
element x ∈ S is deniable with probability γ.

Note that our γ-deniability definition is on purpose restrictive: it imposes that “covert”
elements must not belong to the original set S, but must be drawn only from the hiding
set V . In other words, an element is deniable when it can be replaced with elements not
originally stored in the filter, without changing the filter bitmap. Otherwise, it would
be possible to have all set elements 1-deniable, but the set as a whole would not be
deniable (e.g. think to a set of just two elements, hashing to the same filter bits, and no
false positives).

4 Indeed, the probability that a Bloom filter bit is used by a unique element in the universe set
is (Poisson) approximated by Nuk/m · e−Nuk/m, being Nu the size of the universe set, k the
number of hash functions and m the Bloom filter size. Using k = 4 and m = 628, namely
the minimum filter size able to store 100 elements with a false probability target of 5%, even
an universe set of 1000 elements would leave about 11 impossible to anonymize elements,
irrespective of how the filter is filled.



Fig. 2. Bloom filter composed of elements 〈x1, x2, x3〉 that admits 3 false positives: v1, v2, v3

Figure 2 depicts an illustrative example. The set of elements inserted in the Bloom
filter is S = 〈x1, x2, x3〉; the hiding set comprises the (false positive) elements V =
〈v1, v2, v3〉. The set element x1 is deniable because its relevant filter bitsB[1], B[3], B[8]
are covered by v1 and v2. Element x3 is not deniable because the relevant bitB[9] is not
covered by any hiding set element. Overall, the entire filter is 0.66-deniable. Note that
if element v1 were not in the hidden set, x2 would be not deniable, as its bit B[4] would
be covered only by an element in the actual set, rather than by an hiding set element.

Theorem 1. Let S be a set of size n, inserted in a Bloom filter BF (S) with size m
and k hash. Let U be the universe set, with size Nu. An exact expression for the filter’s
γ-deniability is

γ (BF (S)) =
m∑
b=1

Um(nk; b)

Nu−n∑
v=0

(
Nu−n
v

)(
b

m

)kv (
1−(b/m)k

)Nu−n−v ·

·
b∑
r=0

Ub(vk; r)
(r
b

)k (4)

which can be approximated in closed form by

γ (BF (S)) ≈
(
1− exp

(
− vk

m(1−e−kn/m)

))k
(5)

being v = (Nu − n) · ψ(m, k, n) = (Nu − n)(1−e−nk/m)k the average hiding set
cardinality.

Proof. See Appendix A.

3.2 γ-K-anonymity

The previous γ-deniability is a special case (K=2) of the following probabilistic K-
anonymity notion adapted to the Bloom filter setting.
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Fig. 3. γ-K-anonymity, for K=2,4,6, and two filter sizes (left: m = 1024, n = 128, k = 5; right:
m = 256, n = 32, k = 5; both: ψ = 0.0217). Scatter plots: 100 simulations per each of 12
universe sizes; markers: simulation averaged per each universe size; lines: approximation (6).

Definition 3. An element x ∈ S inserted in a Bloom filter BF (S) is K-anonymous if
∀i ∈ {1..k}, there exist at least K − 1 hiding set elements 〈v1...vK−1〉 ∈ V , such that
∃ 〈j1...jK−1〉 ∈ {1..k} s.t. Hi(x) = Hj1(v1) = ... = HjK−1

(vK−1). A Bloom filter
configuration BF (S) is γ-K-anonymous (or, alternatively, we refer to such property
as γ-K-anonymity), whenever a randomly chosen element x ∈ S is K-anonymous with
probability γ.

With reference to the example of Figure 2, element x1 is 3-anonymous because
each of its bit are covered by two or more bits of the hiding set (B[1] ← (v1, v3),
B[3] ← (v1, v2), B[8] ← (v2, v3)) while x2 is only 2-anonymous because its bit B[4]
is covered only by v1. Overall, the entire filter can be considered as 0.33-3-anonymous.

We sketch in Appendix B how to derive an exact, albeit cumbersome and unpracti-
cal, γ-K-anonymity formula (not reported for reasons of space), as well as the following
much more convenient approximation (being v = (Nu − n) · ψ(m, k, n)):

γ (K,BF (S)) ≈

(
1−exp

(
− vk

m(1−e−kn/m)

)K−2∑
i=0

(
vk/[m(1−e−kn/m)]

)i
i!

)k
(6)

Comparison between analytical approximations and simulation results are shown in
Figure 3. In all cases, the γ-K-anonymity approximation (6) is very accurate, and accu-
racy improves as the filter size grows. Note that the scatter plot shows that dispersion
with respect to average values, obviously found with different realizations of a same
universe set size, do reduce with larger (more realistic) filter sizes.

4 Privacy/Utility trade-offs

In most practical applications, Bloom filters are optimized so as to minimize false pos-
itives for a same memory usage. We recall from well known Bloom filter results [6, 8]
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that the minimum false positive probability is attained when half of the bits are set to 1.
In this case, ψ = 2−k (or, conversely, k = − log2 ψ), and, for a given stored set size n,
the filter size m and the number of hash functions k are related by kn = m ln 2.

It is very enlightening to explicitly devise a special expression for the γ-deniability
of an optimized Bloom filter (a similar derivation can be carried out for the more general
γ-K-anonymity case: details are omitted for reasons of space). Noting that, in such case,
(1−e−kn/m) = 1/2, and exploiting the relations kn = m ln 2 and k = − log2 ψ, the γ-
deniability approximation (5) can be expressed as function of (just) the false probability
target ψ and the relative hiding set size v∗ = v/n as follows:

γ (BF (S)) =
(
1− e−2vk/m

)k
=
(
1− e−2v/n ln 2

)k
=
(
1− 4−v

∗
)− log2 ψ

(7)

Similarly, by defining with u∗ = (Nu − n)/n the remaining relative Universe size,
and by recalling that v = (Nu − n)ψ, we obtain the following direct relation between
γ-deniability and universe size (and false probability):

γ (BF (S)) =
(
1− 4−

Nu−n
n ψ

)− log2 ψ

=
(
1− 4−u

∗ψ
)− log2 ψ

(8)

Formulae (8) and (7) are shown in Figures 4a and 4b, respectively, for different
false positive targets. As expected, Figure 4a shows that a same target γ-deniability
target requires large universe sets as the false positive target gets tighter. Figure 4b
yields more interesting insights. On one side, it confirms that the Bloom filter’s privacy
properties are mainly characterized by the hiding set size, namely the product between
(remaining) Universe set and false positive probability, and that the privacy properties
of a Bloom filter are fairly inefficient: an hiding set twice the size of the original set
accomplished a 0.8-deniability or less. On the other side, this plot shows that, by itself,
the false positive alone (and, consequently, the number of hash functions employed)
has a fairly limited impact when not associated to an increase in the hiding set size.

5 Improving privacy with targeted bit filling
These last considerations yield the suspect (confirmed by numerical results for various
m, k pairs and same ψ, not reported for space reasons) that, given a same false posi-



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

v/n

 

 
tailored filling

random filling

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

N
u

γ
−

d
en

ia
b

il
it

y

 

 

tailored filling

 random filling

no filling

Fig. 5. (a) Left: Fraction of covered elements vs universe size Nu for a 1024 bit filter: no filling
vs tailored filling vs random filling (same number of supplementary inserted bits); (b) Right:
γ-deniability on the v/n ratio in the case of a fixed universe of 1408 elements.

tive target ψ, there is little margin for improving the filter’s privacy using suboptimal
parameter settings, indeed paid with a larger filter size. Thus, the only way to sensibly
increase the filter’s privacy properties is to increase the hiding set cardinality.

Frequently, Bloom filter parameters are a priori given. In these conditions, a straight-
forward action is to reduce statistical disclosure by adding a few random bits. At the
price of increasing the false positive probability, these extra bits increase the number of
elements which appear included in the filter, and hence better protect the actual content.

The discussion carried out in this paper suggests that a better approach consists in
adding tailored bits instead of random ones. The idea is to set bits which ultimately
include false positives which specifically cover filter elements otherwise deniable. To
get some preliminary insights on the possible quantitative advantages of such tailored
filling, we have implemented a simple (and preliminary) greedy heuristic based on the
minimum weighted set covering problem, whose details are presented in Appendix C.

Figure 5a compares the γ-deniability achieved by such tailored filling strategy ver-
sus the γ-deniability obtained by setting a same random number of bits across the filter
(random filling strategy). Despite the simplicity of this preliminary approach, results
appear already very promising: a same γ-deniability is obtained with tailored filling
with a significantly reduced universe size. Figure 5b compares the risk-utility trade-off
for the two cases of random and tailored filling, fixing the universe size to 1408 ele-
ments and varying the number of supplementary inserted bits that in turn results in a
variation of the v/n ratio. In this use case we have 128 elements inserted in a Bloom
filter of 1024 bits.

6 Conclusions

In this paper we have defined and quantified privacy metrics tailored to Bloom filters.
Using such relations, we have investigated the dependency of privacy from the absolute
number of false positives (hiding set) as well as the relative fraction (false positive
probability). Finally, we have preliminary investigated the advantages that a tailored
insertion of extra covert bits yields over a random insertion strategy.
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Appendix A - Proof of Theorem 1 (sketch)

Let us start by defining the following quantities (random variables):

– b ∈ (1,m): number of Bloom filter bits set to 1 after the insertion of the n elements
of S, each inserted through k hash draws. Using the balls and bins result (2) of
Lemma 1, b has probability distribution Um(nk; b).

– v ∈ (0, Nu − n): number of false positive elements in the hiding set V . The proba-
bility distribution of v, conditioned to the knowledge of b, is a binomial distribution
with probability parameter (b/m)k. Note that we do not need to approximate the
false positive probability, as we condition on b, for which we have an exact distri-
bution.

– r ∈ (0, b): number of bits which would still be 1 if we were removing all the “true”
filter elements S , i.e. number of distinct bits “hit” by the false positive elements
V whose vk hash functions are, by definition of false positive, drawn among the b
filter’s bits set to 1. Conditioning to b and v, the distribution of r is given by Lemma
1: Ub(vk; r).

A randomly chosen set element is deniable if all its k hash functions fall over the r (out
of b) bits further covered by the hiding set. This occurs with probability (r/b)k. The
exact expression (4) is now a straightforward application of the law of total probability.

Computation of the exact formula (4) is cumbersome and time consuming. How-
ever, for practical filter parameters, all the above involved distributions are tightly con-
centrated around their mean (this is well known for Binomial distributions; see e.g.
figure 6 for what concerns the balls and bins distribution Uu(z;x) from Lemma 1). So
the closed form approximation (5) is readily obtained by replacing, in (r/b)k,

– r ← b
(
1− (1− 1/b)vk

)
≈ b

(
1− e−vk/b

)
;

– b← m
(
1− (1− 1/m)nk

)
≈ m

(
1− e−nk/m

)
;

– v ← (Nu−n)ψ, using for ψ the false positive approximation ψ = (1− e−nk/m)k.



Appendix B - Derivation of γ-K-anonymity formulae (sketch)

Let us define the quantities b and v as in Appendix A. Let rK ∈ (1, b) be the number of
filter bits which are set to 1 (i.e. they are “hit” by at least one of the nk hash functions
applied to “true” filter elements in S) and which are further “hit” by at least K−1 hash
functions among the vk applied to elements of the hiding set V . Note that r2 = r, with
r defined as per Appendix A, and that b ≥ r2 ≥ r3 ≥ r4 · · · .

A random element drawn from S is γ-K-anonymous if all its k hash functions fall
in the subset of rK−1 bits defined above. Assuming rK−1 and b known, this would
occur with probability (rK−1/b)

k. An exact derivation of a γ-K-anonymity expression
can now proceed similar to Appendix A. It suffices to repeatedly apply Lemma 1 and
note that (as shown in Appendix A) r2 ∈ (1, b) is a r.v. with distribution Ub(vk; r2),
r3 ∈ (1, r2) is a r.v. with distribution Ur2(vk − r2; r3), and so on; final application
of the law of total probability would yield the result (but a cumbersome and far from
practical one!).

Hence, it is much preferable to directly derive an approximation by using mean
values in the γ-K-anonymity expression (rK−1/b)

k. The mean value for the r.v. rK−1

can be easily derived as follows. Let us focus on a single bit among the b covered by
element from S. Define the random variable Xi ∈ {0, 1} which assumes value 1 when
the considered bin is “hit” by K − 1 or more hash functions among the vk applied to
elements of the hiding set V . A Poisson approximation readily yields

P{Xi = 1} = 1−
K−2∑
j=0

e−vk/b
(vk/b)j

j!

Hence,

bE[Xi] = b

1− e−vk/b
K−2∑
j=0

(vk/b)j

j!


Approximation (6) is now readily obtained by substituting, in (rK−1/b)

k, the above for
rK−1, and (as per Appendix A), b← m

(
1− e−nk/m

)
.

Appendix C - tailored filling heuristic

For simplicity, we here describe an approach to improve γ-deniability only. Let us de-
fine the following three sets:

– E : filter bits initially not covered by any false positive;
– D: filter bits initially set to zero;
– R = U�S ∪ V: subset of universe elements initially neither in the filter nor false

positives.

We want to find a collection of elements C ⊆ R that cover all the bits in E while
minimizing the number of filling bits added toD. This problem resembles the minimum
set cover problem, with the difference that we want to choose a coverage of E from a



Algorithm 1 tailored-filling(E ,D,R)
U ← E
C ← 0
D ← D
while U 6= 0 do

select c ∈ R that maximizes the ratio: c
⋂
U/(c

⋂
D)

U ← U�(c
⋂
U)

C ← C ∪ c
D ← D�(c

⋂
D)

end while
return C

subset of R that does not need to be of minimal cardinality, but rather needs to mini-
mize the number of bits set in D. We preliminary address this problem adapting a very
popular minimum weighted set covering greedy heuristic, shown in Algorithm 1.

In the worst case, when @ri, rj ∈ R s.t. rj
⋂
ri
⋂
D 6= ∅ (i.e. all the subset ofR do

not share any element ofD), the collection C returned by the algorithm covers at most a
number of bits in D that are log(|E|) times the one covered by the optimal choice. This
directly inherits from the properties of the greedy algorithm for the minimum weight
set cover, since we use as weights the number of additional bit we need to set in the
Bloom filter.
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