
Let me grab your App: a preliminary
proof-of-concept design of opportunistic content

recommendation
Giuseppe Bianchi, Pierpaolo Loreti, Arijana Trkulja,

University of Roma “Tor Vergata”, Italy, Email: name.surname@uniroma2.it

Abstract—With the rate of mobile traffic growth eventually
outpacing 4G technology upgrades, finding new means to of-
fload the cellular network appear crucial. Whereas exploitation
of device-to-device opportunistic short range connectivity is a
promising and widely investigated direction, it might ultimately
play a negligible role for offloading purposes: in front of the
huge overall content universe an user may select to access,
it is unlikely that a specific user request can be found in a
possibly small number of neighboring mobile devices. Focusing
on a concrete use-case scenario, namely Apps download from
Google’s Android market, we discuss a preliminary design and
implementation of CarpeDroid, a proactive local coordination
approach devised to recommend end users with download oppor-
tunities for content (likely to fall within the users’ interest) locally
stored in neighboring devices. Our approach does not rely on any
centralized or operator-assisted recommending system. Efficiency
and “better than nothing” privacy protection is achieved through
the exchange of Bloom filters devised to summarize content stored
in the network neighbor.

I. INTRODUCTION

The widespread diffusion of smartphones and tablets is
creating an unbearable pressure on cellular networks. Recent
analyses [1] predict an exponential growth in mobile traffic,
mostly caused by mobile video retrieval/streaming, which
some analyst even refers to as “mobile data apocalypse”. In
2010, global mobile data traffic nearly tripled for the third
year in a row, and predictions to 2015 suggest a further 26-
fold traffic increase topping 6.3 exabytes per month by 2015.
According to some researchers’ opinion, emerging 4G tech-
nologies might not succeed in providing enough capacity to
accommodate future mobile traffic. Thus, massive deployment
of WiFi-based [2], [3], [4] or Femtocell-based [5] offloading
solutions, as well as mobile content delivery architectures
integrating broadcasting technologies [6] are being envisioned.

On top of this, we argue that a further help may come
from the emergence of user-centric approaches, revolving
around pure end-user-based collaboration (explicit or implicit)
via short-range device-to-device communication technologies.
Why a user should access a quality-scaled video stream from
the resource constrained access link (and eventually pay for
it, if no flat rate fare is contractualized) whenever the same
content may be readily available a few meters away over
another end-user terminal? Indeed, a huge effort has been spent
on the design and performance assessment of opportunistic
networking frameworks [7], [8], [9], including their tailoring

to the specific cellular network offloading scenario [10], [11],
[12]. These techniques leverage the relatively large storage
capacity deployed in modern mobile devices, and are devised
to permit direct exchange of content information among end
terminals (eventually through a multiplicity of relay nodes)
without resorting on any infrastructure.

However, opportunistic networking technologies, by them-
selves, may be of little help. With the huge universe of distinct
named resources, and the necessarily limited storage space
opportunistically available in neighboring mobile devices, only
a marginal percentage of requests may be ultimately satisfied
by short-range opportunistic downloads.

The traditional way to address this issue consists in devising
solutions for smartly distributing popular content across end
user devices. However, especially when not assisted by a
centralized entity (e.g., an operator) having an holistic view
of the overall network status, an effective content placement
strategy requires to overcome crucial hurdles1 ranging from the
need to deploy complex device-to-device coordination means
supported by very efficient mobility and contact predictions,
to the need for end users to accept to use part of their storage
as distributed cache for content otherwise of no interest.

A quite different direction for increasing the chances of
short range downloads consists in opportunistically recom-
mending content stored in the network neighbor to an end
user which, otherwise, would download something else from
the cellular network. An end user wishing to see “Spiderman”
may eventually decide to alternatively see “Fantastic Four”
(a different movie, but still science fiction from the same
brand), as long as she gets to know that such movie is readily
available a few meters away (and possibly at a better quality
and/or at no price) over another end-user terminal. And if
she ultimately decides to stick to the original choice, nothing
is lost; rather, a supplementary offloading opportunity has
been missed. Indeed, as argued in [13], and as well known
since long time by search engines and business players in the
advertisement and consumer domains, end users only rarely
aim at addressing a precise, named, networked content or

1Note that we do not imply that these issues cannot be addressed; indeed
several literature works, including (but not limiting to) [7], [8], [9], [10], [11],
[12], propose smart solutions to some of these problems. Rather, we tend to
believe that real world deployment chances may improve if these hurdles are
avoided, rather than addressed.



resource. Rather, our day-to-day web browsing experience
suggests that most content retrievals are typically composed
of two clearly distinct phases: a first generic look-up for
“something” we are interested into, e.g. by querying for some
keywords via a search engine’s web interface, followed by
a selection among the several listed different digital items. In
several cases, more than just one single item may satisfactorily
match what we are generically looking for.

Our Contribution

This paper is a preliminary work focusing on the techni-
cal feasibility of least-invasive, fully distributed, and purely
end-user operated opportunistic recommendation for content
locally stored in neighboring devices and likely to fall in the
user’s interest.

Throughout this work, we rely on a concrete, proof-of-
concept, user-case scenario, namely download of android Apps
from the Google’s Android Market. We design and prelim-
inary implement CarpeDroid, a framework which permits
to seamlessly augment the list of downloadable Apps made
available over the smartphone user’s interface with Apps of
possible interest for the end user available in short-range
connected mobile devices. In essence, CarpeDroid supports
a lightweight, fully distributed, recommending system which
does not rely on any centralized entity, and exploits only the
following information: i) public knowledge on android Apps
classification, ii) legacy response from the Google’s Android
Market, and iii) sketched information (via Bloom filters’ [14],
[15] exchange, for “better than nothing” privacy protection)
about the availability of Apps stored in neighboring devices.
Another important advantage of our proposed approach is
usability: the end user relies on the usual graphical user
interface, and may in principle even remain unaware that some
of the listed Apps may be locally downloaded.

II. SYSTEM BASICS AND DESIGN CHOICES

In this section we introduce and motivate the basic ideas
upon which CarpeDroid design is based.

Classic operation: Look-up and Select

CarpeDroid aims at extending a content retrieval operation
which, in most generality, we refer to as look-up and select.
As discussed in the introduction, the end user interaction with
the Internet frequently consists in first searching for some
generic information or a more or less specific topic, and then
selecting for download one among a multiplicity of listed
results. For our purposes, it is worth to remark that, often,
multiple different resources among those listed may satisfy
the user’s needs.

As a concrete example, let us focus on a classic transaction
involving the Android Market. An user aiming to install a
new functionality on her smartphone opens the Market App
(pre-installed on its device) and queries the server with some
keywords more or less related to the problem. We call this
first query as the Look-up phase. The server replies with a list

Cellular
Network

b) opportunistic scenario

a) classic scenario

Cellular
Network

Local 
Net

query

app list

app list
local app

query

Fig. 1. Classic and opportunistic content retrieval scenario.

of Apps which the server provider expects to be of interest2

for the end user. What follows is what we call the Select
phase: the user scrolls the returned list of Apps, along with
the supplementary information conveyed (price, other users’
rating, etc), and finally selects the specific App to install, by
clicking on the relevant entry and starting the App download,
namely the most bandwidth consuming part of the overall
transaction.

Proposed operation: Look-up, Expand, and Select

CarpeDroid operates by adding a supplementary intermedi-
ate phase (transparent to the end user) to the above described
Look-up and Select operation (compare figure 1-b with 1-a).
This phase is called “Expand”. It runs on the end user device,
taking as input:

• the list of Apps returned by the market server;
• an Apps’ knowledge base pre-installed on the end user

device, describing how Apps are classified into cate-
gories; and

• the list (actually a summary sketch, as discussed in
the next section) of Apps available in the neighboring
devices, suitably retrieved through a specifically devised
short-range cooperation protocol.

Goal of the Expand phase is to identify which Apps, among
those available in the local network neighbor, may be of
interest for the end user on the basis of her actual request
made during the Look-up phase. The Expand phase concludes
by adding such supplementary identified Apps3 to the original
list retrieved from the Market server. If, during the following

2Typically, the construction of such list involves proprietary search and/or
recommending algorithms which may further use historical and/or user
profiling/behavioral information. It is not our goal to interfere with such
proprietary algorithms; indeed, as shown in what follows the only information
we rely upon is the returned list of Apps, independent of how it has been
constructed by the Market service.

3The locally available Apps may be eventually rendered on the user terminal
with a different color or style, to make the end user aware of their locality.



Select phase, the end user chooses to download one of such
supplementary Apps, a direct short-range connection between
the two devices is triggered instead of the Market download,
thus saving cellular network resources.

The rationale behind the expand phase is to further recom-
mend the user with Apps which can be conveniently retrieved
from the network neighbor via short range communication. As
such, we can envision the described operation as a distributed
and purely end-user-operated way to fill a gap in the actual
content selection and recommendation operated by the Market
provider, a gap consisting in the Market provider’s inability to
base its own recommendation also on network convenience
information (obviously, the list of results provided by the
Market service do not account for the opportunistic availability
of content locally stored in the network neighborhood).

Design choices

CarpeDroid design requires to address two major tasks. The
first is how to gather information about the neighborhood
status. As detailed in section III, our proposed information
exchange is operated in background using short-range com-
munication technologies and is opportunely compacted into
Bloom filters. The second task is how to expand the list of
Apps presented to the end user. This involves the design of
a sort of lightweight distributed recommending system (we
consider not practical the basic solution of presenting the end
user with all the Apps available in the network neighbor),
triggered at the time of the look-up phase. Our proposed
approach, detailed in section IV, is devised to avoid any
explicit cooperation with the neighboring devices (except the
above Bloom filters’ exchange) and relies only on information
available on the end user terminal. Supplementary decisions
are mostly implementation ones, and are discussed in section
V, along with the current limitations and open issues.

III. LOCAL INFORMATION GATHERING

In principle, local information gathering may trivially re-
duce to each device being in charge of broadcasting over the
network neighbor its list of stored Apps. In practice, two issues
must be addressed.

One is merely technical. It consists in detailing how such
broadcasting process is supported by available short range
communication technologies, and how the neighborhood is
defined. Our preliminary implementation discussed in section
V relies on Bluetooth (for energy efficiency reasons), and
limits the network neighbor to the directly connected devices
(i.e. no multi-hop).

The second one is more meaningful, and revolves on the
type and format of information to be exchanged. We believe
that a direct broadcasting of the raw list of Apps stored on a
device may be envisioned as questionable by the end users,
mostly for privacy reasons. As such, we propose to exchange
a summary sketch of the Apps stored in each device, in the
form of a Bloom Filter. As discussed below, this choice has the
advantage to provide a light, but at least “Better than nothing”,
privacy protection, as well as permit deniability (an user may

ultimately deny that a specific App were stored on its device,
blaming a Bloom filter’s false positive). Moreover, the usage
of Bloom filters further yields a low overhead, owing to the
relatively small size of the exchanged filters (a filter of just
250 bytes may store up to 200 App names with a false positive
in the order of 1%). However, the usage of Bloom filters is
not free of disadvantages; indeed, it slightly complicates the
design of the Expand phase, as discussed in section IV.

Bloom filters

We recall that a Bloom Filter [14], [15] is a probabilistic
data structure used to represent set membership. A Bloom filter
is implemented as an array of m bits accessed via k hash
functions H1(x)...Hk(x), each of which maps a set member
x to one of the m bits within the bit array.

Let B[i] be the value of bit 1 ≤ i ≤ m within the bit array.
Insertion of a set member x into a Bloom filter consists of
setting ∀j ∈ {1..k}, B[Hj(x)]← 1. Querying the presence of
a set member x within a Bloom filter consists of computing
∀j ∈ {1..k},min{B[Hj(x)]} (i.e., returning 1 only if all
corresponding bits are 1).

In Bloom filters, false positives are possible but false
negatives are not. A false positive is the probability that a set
membership query returns 1 for an element not stored in the
set. We recall from well known Bloom filter results [15] that,
for a Bloom filter of size m, employing k hash functions, and
storing n elements, the false positive probability ψ is closely
approximated by the expression:

ψ ≈
(
1− [1− 1/m]

km
)k

≈
(
1− e−nk/m

)k

.

Knowing in advance the number of elements n to be stored in
the filter, the false positive probability is minimized by setting
the number of hash functions to the integer value closer to
k = m/n · ln 2. As shown in [15], it follows that for a given
Bloom filter of size m, storing n elements, in such optimal
conditions the false positive probability is given by:

ψopt =

(
1

2

)m
n ln 2

≈ 0.6185m/n.

This last expression permits to easily parameterize the size
of a Bloom filter with respect to the number n of (expected)
stored elements. For instance, for a target 5% false positive
probability, it suffices to deploy about 6.2 × n bits, whereas
for an 1% false positive target, the amount of memory required
increases to slightly less than 10× n.

Bloom filter usage and discussion

All devices participating to the local information gathering
operation must preliminarily agree on the Bloom filter pa-
rameters, namely the Bloom filter size m, the number k of
employed hash functions, and the algorithm used to compute
such hash functions. Such parameters may be dimensioned
by setting a target false positive probability in the assumption
of a worst-case number of Apps stored on a device; in our
implementation we use 200 bytes and 4 hash functions: this
choice permits to store up to 256 App names with a false



TABLE I
EXAMPLE OF META DATA FOR AN ANDROID APPLICATION

Basic Info
Meta value
id -6105825170608772224
title Live soccer results
appType APPLICATION
creator mdtec
version 0.99.6
rating 4.352346383199378
ratingsCount 3857
creatorId mdtec
packageName net.mdtec.sportmate
versionCode 18

Extended Info
description live results, detailed statistics, ...
downloadsCount 0
permissionId android.permission.INTERNET
installSize 2314161
packageName net.mdtec.sportmate
category Sport
contactEmail info@mdtec.net

positive lower than 5% (dropping to less than 1% if no more
than 152 Apps are stored).

Each device inserts all the downloadable App names in
the filter to be broadcast to the network neighbor. To this
purpose, note that a set member x inserted in a Bloom filter
is an arbitrary sized string. For our purposes we could either
use the App unique numeric identifier (handled as a string),
or the App name (as we did, for convenience), or, to avoid
ambiguity, an extended string composed of the App name
followed by the App version, the creator identifier, and any
other information deemed useful to uniquely identify an App,
among the meta tags provided by the Android market for a
given App. Such information includes the title, the identifier,
a description, categories or tags for classification, etc (see the
example in Table I).

A device receiving such so filled Bloom filters from the
neighboring devices may trivially test whether a looked for
App named x is locally stored, by querying the presence of the
set member x within such filters. If neither query is successful,
the App is surely not available in the network neighbor.
Conversely, of one or more filters return a positive response,
the App may be available (indeed, the positive response may
be a false positive).

Note that the disclosure of a Bloom filter permits to query
whether some selected App is therein stored (with the am-
biguity given by the false positive probability), but by itself
it does not provide the list of stored Apps in clear text.
From a privacy perspective, this is clearly far from being a
strong form of protection. Indeed, an attacker may trivially
narrow the candidate set of stored Apps by running a so-called
Enumeration attack, i.e. querying the Bloom filter with the
universe set of deployed Apps, about 350.000 at the time of
writing. Nevertheless, the false positive probability yields a
superset of the actual subset of Apps stored in the device. For
instance, an enumeration attack against a Bloom filter filled
with 256 Apps (5% false positive, based on our parameters)

would return about 17.500 candidate Apps stored in the device,
versus the actual 256 stored ones. Note that this permits
an end user to deny the accusation that a specific App is
stored on her device. For these reasons, we believe that the
weak, but “better than nothing”, level of privacy protection
provided by the usage of Bloom filters4 may ultimately be
acceptable by real world users, as well as by system developers
(more advanced cryptographic protection techniques, such as
searchable encryption [16], would bring about cumbersome
key management issues).

IV. THE EXPAND PROCESS

The local information gathering procedure described in the
previous section permits each node to determine whether a
given App is stored in a neighboring device. In this section,
we describe how this feature is exploited to expand the list of
Apps returned to the end user for the Select phase.

The expand process uses three different types of informa-
tion.

1) U : universe set of all possible Apps. These Apps are
organized, by the Android Market, into NC categories
Cn. the Apps comprised in the category Cn are labeled
cni . Each device stores the set U in a local database (note
that the database comprises just the App meta data, not
the actual Apps).

2) Bm: set of the Apps bmi stored in the m-th node in the
neighborhood; each set is represented in the form of a
Bloom filter, as discussed in the previous section;

3) R: the set of Apps rni returned by the market server in
response to the user query.

The Expand process bases its operation on the assumption
that a user looking for an App, classified by the Android
Market as belonging into a given category, may be interested
in other Apps belonging to the same category. The knowledge
of which App belongs to which category is provided by the
database U , pre-loaded in the user device.

Our design problem consists in mapping the user query,
typically expressed in layman terms, hence using generic
keywords, into actual Apps of potential interest for the user.
This problem can be easily circumvented by using, as input of
the Expand procedure, instead of the end user query, the actual
answer provided by the server in the easy to process form of
a list of App names and associated meta data. In other words,
we rely on the “recommending logic” implemented in the
Market server, and we derive further local recommendations by
including all the Apps which either i) fall into a same category
of at least one App included in the server response list (i.e.
recommended by the Market service), and ii) are available in
the network neighbor.

The detailed approach is illustrated in the Algorithm 1. For
each App rni returned by the Market server, the algorithm
selects all Apps belonging to the same category in which rni is

4note that a device storing a very small number of Apps, hence for which
the false positive probability would significantly reduce with respect to the
5% example case (with 256 Apps), might randomly insert App names so as to
artificially reach the obfuscation level granted by the 5% false positive target.



Algorithm 1 Expansion of the list of results coming from the
server

Input: List of the NR results rni coming from the server; list of all items
cni stored in the local db and i = 1, ..., Nn (the index n indicates that
{rni , cni } ∈ Cn); Collected Bloom filters Bm.
Initialization: Iteration index i = 0. List of index of categories LC = [].
Output set E = [].
for i = 1 to NR do

Select rni
if n /∈ LC then

add all cni to E
add n to LC

end if
end for
Output: The subset of the elements in E which are also found in at least
one among the Bloom filters Bm.

classified according to the local database. Then, it outputs the
subset of such selected Apps which are found to be available
in the gathered Bloom Filters. The found items are added to
the results list presented to the end user. The locally available
items may be optionally suitably rendered to permit the end
user to distinguish them from the original Market response
(and hence privilege locally stored content).

Illustrative example

Let’s suppose to have a local database with just three cate-
gories C1, C2 and C3 and the items {c11, c12, c13, c14, c15} ∈ C1,
{c21, c22, c23, c24, c25, c26} ∈ C2 and {c31, c32, c33, c34} ∈ C3. The user
execute a search query using a string that produces for example
the following list of results {c11, c23, c14, c12, c22}.

Since the results are in the C1 and C2 categories, the
procedure creates a new list with all the missing elements in
C1 and C2 i.e. E = {c13, c14, c15, c23, c24, c25, c26}.

Let suppose now to have the information on the items
{c26, c37, c15, c47, } accumulated in the bloom filters collected
fron the various devices in the neighborhood. The item in E
are tested against the bloom filters and the result is clearly
{c26, c15}.

Thus the list presented to the user is the union of the
results coming from the server and the results in the local
environment, i.e. {c11, c23, c14, c12, c22} ∪ {c26, c37, c15, c47, }

V. ANDROID IMPLEMENTATION

For technical validation purposes, we implemented the
proposed approach over Android devices, using the Bluetooth
technology for local information gathering and device-to-
device applications download.

System set-up

An Android application has to be installed in the terminals.
When the application is first started, it downloads from a web
repository the list of all deployed Apps. For each application
the repository delivers the application name, category and
creator. The data are exchanged according to the JSON format
using the following array notation: [[”app1 name”,”app1 cat-
egory”,”app2 creator”], [”app2 name”,”app2 category”, ”app2
creator”], ... ]. The download of the App list can be postponed

if the terminal is connected to the cellular network waiting for
a wifi connection.

We have constructed the web repository by crawling, once
for all, the Android Market. Since, to the best of our knowl-
edge, the Market does not have any defined interface for
accessing the information about the stored Apps, we designed
a script in the server that scans the html pages listing the Apps
stored on the website https://market.android.com/, and extracts
the needed parameters.

Bluetooth Information Exchange

The information exchange among terminals is operated by
the Bluetooth technology. The selection of Bluetooth is due
mainly for its energy efficiency with respect to the WiFi: using
”continuously” the WiFi consumes the battery in few hours,
while Bluetooth provides around 8 to 10 hours of battery life
[17].

The local information gathering procedure is managed by a
background service activated at boot time. It operates a Blue-
tooth discovery periodically. When a device is discovered, the
service controls if the device has already been present in the
local database. If it is not, a Bluetooth ”Insecure” RFCOMM
connection is initiated to perform the data exchange. This
kind of connection allows the creation of P2P links without
the manual intervention of the user. Clearly multiple devices
can be discovered: the application will try to connect all of
them, sequentially. The data exchanged over the air are the
bloom filters that are transferred as a stream of byte through
the created RFCOMM connection.

The background service activated at the boot saves all the
received Bloom filters and the Bluetooth addresses of the
device in a list. Each element in the list has an insertion time:
if the data is older than 10 minutes we consider the element
expired and the Bloom filter has to be acquired again. But
if during a discovery the device is detected we refresh the
insertion time as if the node would have sent a new Bloom
filter. If a node change its Bloom filter it has to send it again
to all neighbor devices.

We write in the bloom filter the names (in lower case)
of the Apps, retrieved by the Android PackageManager. The
applications that are installed in the system folder are excluded
from this operation.

Bluetooth limitations

The Bluetooth technology has some intrinsic and Android
specific limitations.

The Bluetooth discovery phases is very long and there is
a probability of not discovering a device dependent mainly
on the active connections and the scan duration both in the
searching and searched device. Moreover the simultaneous
searching/discovery mode activated in a device can even
sharpen this situation. This limitation is intrinsic in the Blue-
tooth technology and cannot be easily solved.

Moreover the Android system introduces a security features
limiting the duration of the discovery states in the devices.
After 300 seconds the device asks for a manual intervention



of the user for remaining in the discoverable state. The only
solution we found is the insertion at the system level of a
process that keeps the device in discoverable mode. However
this is not a simple modification because the root account in
the device has to be reactivated.

Apps search

The search for the applications is performed by the open
source project ”android-market-api”. This project provides a
convenient way to access the Android market retrieving all
the relevant information of the Apps. However the number
of results for each query is limited to 10. Inspecting the
project source code we noted that the ”android-market-api”
interrogates the market with a standard HTTP query and parses
the returned page to grab the results. The main difference with
the approach of our server is related to the authentication: in
fact the ”android-market-api” provides the market with the
Google account bind to the device.

Further open issues

A number of issues are still open in our implementation.
By far, the most critical one is that of security: a neighboring
device involved in a local download may deliver a different
application than that requested, and the usage of Bluetooth
without coupling is prone to man in the middle attacks.
Integrity verification for Apps thus appears advisable.

Another major issue is to migrate from Bluetooth to WiFi
technology or other peer to peer communication solutions. The
specific usage of WiFi requires to properly address energy
consumption issues, for instance via suitably synchronized
periodically executed local information gathering procedures,
instead of persistent ones.

VI. CONCLUSIONS

In this paper, using as proof-of-concept use-case the down-
load of Apps from the Android Market, we have introduced
CarpeDroid, an approach for opportunistically recommend-
ing content stored in the network neighbor to an end user.
CarpeDroid does not require any centralized entity, and is
lightweight and not invasive. End user devices limit their inter-
action to the asynchronous exchange of the list of stored Apps,
suitably organized in the form of Bloom filters for better than
nothing privacy protection, and the recommending algorithm
is purely based on a suitable integration of information locally
stored in the end user device, and information returned by the
(legacy) Android Market upon a standard end user request.

We believe that the CarpeDroid ideas preliminarily pre-
sented here for the specific Apps download use-case may fit
well in other more general scenarios, involving distributed
recommendation of non-real time content that can be cached in
the terminals such as video, music, photo, newspaper, etc, and
relevant access through a two-step look-up and select interface.

The main issue left open in this work is the extent to
which CarpeDroid may improve network efficiency and help
in offloading. This is a very complex task, left as our future
challenge, as we believe that a convincing assessment may

hardly get rid of a large scale experimentation of real-world
end users (to the best of our knowledge, no simple but realistic
models are available to simulate how users choose among
content alternatives).

REFERENCES

[1] Cisco Visual Networking Index Whitepaper: Global Mobile Data
Traffic Forecast Update, 2010-2015, february 1, 2011, available online:
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/
ns705/ns827/white paper c11-520862.pdf

[2] A. Balasubramanian, R. Mahajan, A. Venkataramani, “Augmenting mo-
bile 3G using Wi-Fi”, ACM MobiSys 2010, Jun. 2010, pp. 209-222.

[3] A. Handa, “Mobile Data Offload for 3G Networks”, White Paper,
IntelliNet Technologies, Oct. 2009, available online: http://www.intellinet-
tech.com/Media/PagePDF/Data Offload.pdf

[4] K. Lee, I. Rhee, J. Lee, Y. Yi, S. Chong, “Mobile data offloading: how
much can WiFi deliver?, Poster, ACM SIGCOMM ’10. August 2010.

[5] V. Chandrasekhar, “Femtocell Networks: A Survey”, IEEE Communica-
tions Magazine, 46(9):59-67, Sept. 2008.

[6] R. Bhatia, G. Narlikar, I. Rimac, A. Beck, “Unap: User centric network-
aware push for mobile content delivery”, IEEE INFOCOM 2009, April
2009, pp. 2034-2042.

[7] J. Su, J. Scott, P. Hui, J. Crowcroft, E. De Lara, C. Diot, A. Goel, M. H.
Lim, E. Upton, “Haggle: seamless networking for mobile applications”,
9th int. conf. on Ubiquitous computing (UbiComp ’07), pp. 391-408.

[8] A. K. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, C. Diot, “Mobi-
Clique: middleware for mobile social networking”, 2nd ACM workshop
on Online social networks (WOSN ’09), Barcelona, 2009, pp. 49-54.

[9] C. Boldrini, M. Conti, A. Passarella, “Design and performance evaluation
of ContentPlace, a social-aware data dissemination system for opportunis-
tic networks”, Elsevier Comp. Networks, 54(4), Mar 2010, pp. 589-604

[10] B. Han, P. Hui, V. S. Anil Kumar, M. V. Marathe, G. Pei, A. Srinivasan,
“Cellular traffic offloading through Opportunistic communications, a case
study”, 5th ACM workshop on Challenged networks (CHANTS ’10).

[11] B. Han, P. Hui, A. Srinivasan, “Mobile data offloading in metropolitan
area networks”, SIGMOBILE Mob. Comput. Commun. Rev., vol. 14, pp.
28-30, November 2010.

[12] J. Whitbeck, Y. Lopez, J. Leguay, V. Conan, M. Dias de Amorim,
Relieving the Wireless Infrastructure: When Opportunistic Networks Meet
Guaranteed Delays, IEEE WoWMoM 2011, June 20-23, Lucca, IT, 2011

[13] G. Bianchi, S. Giordano, “Challenge: Network-aware Human Traffic
adaptation”, 8th int. conf. on Wireless On-Demand Network Systems and
Services (WONS ’11), 26-28 Jan. 2011, pp. 132-133.

[14] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, pp. 422–426, July 1970.

[15] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” in Internet Mathematics, 2002, pp. 636–646.

[16] A. Boldyreva, “Search on Encrypted Data in the Symmetric-Key Set-
ting”, Selected Areas in Cryptography, Springer, LNCS, vol. 6544, 2011.

[17] R. Friedman, A. Kogan, Y. Krivolapov, “On Power and Throughput
Tradeoffs of WiFi and Bluetooth in Smartphones”, 30th IEEE Interna-
tional Conference on Computer Communications (INFOCOM 2011).


