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Abstract—Opportunistic Networks (OppNets) offer a very
volatile and dynamic networking environment. Several appli-
cations proposed for OppNets - such as social networking,
emergency management, pervasive and urban sensing - involve
the problem of sharing content amongst interested users.
Despite the fact that nodes have limited resources, existing
solutions for content sharing require that the nodes maintain
and exchange large amount of status information, but this limits
the system scalability. In order to cope with this problem,
in this paper we present and evaluate a solution based on
cognitive heuristics. Cognitive heuristics arefunctional models
of the mental processes, studied in the cognitive psychology
field. They describe the behavior of the brain when decisions
have to be taken quickly, in spite of incomplete information.
In our solution, nodes maintain an aggregated information
built up from observations of the encountered nodes. The
aggregate status and a probabilistic decision process is the
basis on which nodes apply cognitive heuristics to decide how to
disseminate content items upon meeting with each other. These
two features allow the proposed solution to drastically limit the
state kept by each node, and to dynamically adapt to both the
dynamics of item diffusion and the dynamically changing node
interests. The performance of our solution is evaluated through
simulation and compared with other solutions in the literature.

Keywords-opportunistic networks; content diffusion; cogni-
tive heuristics;

I. I NTRODUCTION

Cognitive psychology studies the way the human brain
works and reacts to external stimuli. Several studies show
that the brain often perceives the observed events as bi-
nary sequences occurring over time [18] and use them to
make decisions according to afrequency-basedreasoning.
In particular, cognitive heuristicsare functional models
of the mental processes [12], [13] on which the humans
rely to quickly take appropriate actions also in presence
of incomplete knowledge of the situation. They do not
aim at reproducing the detailed physiology of the brain’s
processes (as neural networks), but model their functionality.
Heuristics can thus be seen as methods used by the brain to
quickly find a solution to a problem, when the exhaustive
search of the optimal solution is impractical or infeasible.
Cognitive heuristics have been applied in various fields, such
as financial decision making [8], forecasting purchases [10],
results of sport events [5], outcomes of political elections [9].

Usually, the solution supplied by heuristics well approxi-
mates the optimum.

The capability of heuristics to work in a fast and frugal
way makes them an interesting approach to be adopted in
OppNets.Opportunistic networks are self organising mobile
networks where the existence of simultaneous end to end
paths between nodes is not taken for granted, while discon-
nections and network partitions are the rule. Nevertheless,
opportunistic networks support multi hop communication by
temporarily storing messages at intermediate nodes, until
the network reconfigures and better relays (with respect to
the final destinations) become available. Due to the scarcity
of resources, the impossibility of building a global system
knowledge, and the possibly short time at disposal of the
nodes – when a contact occurs – to exchange information
and carry on data dissemination, using cognitive heuristics in
such an environment looks in principle a sensible approach.
It is worth noting that this approach is not yet another bio-
inspired protocol. In our scenario, nodes are actual proxies
of their human users in the cyber world. By using the same
cognitive processes of their users nodes behave very similar
to how human counterparts would behave if facing the same
problem in the real world. In this sense nodes play their role
of proxy.

Among the various cognitive heuristics, in this paper
we consider in particular the recognition heuristic [12],
[13]. In a single sentence, it states that, when confronted
between two possible alternatives, the brain selects the
one that it ”recognises”. The behaviour of this heuristic
can be explained through the following example: a person
asked to to indicate which university is more endowed
without having any direct information about the real entity
of endowments will make his selection according to other
indirect information like how often a university name comes
to his attention. The more often he hears a university name
the more likely he will indicate the recognized university
name as more endowed.

In this work, we exploit the recognition heuristic for
data dissemination in opportunistic networks. We assume
a scenario characterized by the presence of contents –
data items – organized in specific topics – channels of
interest – and nodes interested in some of those topics.
Moreover, nodes act as both contents generators and data



carriers, indeed, contacts between nodes are the only way to
disseminate data items in the system. A key problem every
node part of a data dissemination system for opportunistic
network has to face is dynamically deciding when specific
data items must be diffused more or less aggressively. In
this paper we exploit the recognition heuristic to address
both these aspects:(i) in order to decide whether diffusion
has to be boosted for a certain item, nodes in our system
recognise which items are of interest for several nodes;(ii)
in order to decide whether an item is already sufficiently
diffused, nodes in our system are able to recognise that is
already carried by (most of) the interested nodes. The work
presented in [6] is a preliminary attempt at investigating this
approach (see Section II for more details). The main focus
of [6] was to highlight that using the recognition heuristic
is a viable option. In this paper we turn this idea in the
definition of a concrete system for opportunistic networks,
by investigating how cognitive heuristics can be applied
taking into consideration key restrictions of opportunistic
networks, i.e. resource limitations and dynamic conditions.
In particular, in [6] the recognition decisions were taken
based on punctual information about the single data items,
and by defining fixed parameters, that had to be tuned de-
pending on the specific networking environment. These fea-
tures can result in significant scalability problems, and when
wrongly tuned in poor adaptation to dynamic environments.
Clearly, they represent roadblocks for applying recognition
heuristics in concrete cases. In this paper, while we share
the overall idea of [6], we drastically modify the actual data
dissemination algorithms to remove these roadblocks, by
still keeping the benefit brought by the use of recognition
heuristics. Specifically, we only exploit aggregate informa-
tion for driving the behaviour of the recognition heuristic,
that is, we investigate how the cognitive heuristics could
be applied by starting from aggregate information about the
dissemination state of data items only. This can be seen
as the application of another cognitive mechanism aimed at
maintaining only few essential information about the state
of the surrounding environment and permits to drastically
reduce (with respect to [6]) state maintained by nodes to
implement the data dissemination policies. Our results show
that this reduction comes without scarifying the performance
in terms of delivering data items to interested users. Another
key feature is represented by the introduction of a stochastic
mechanism that drives the recognition process. This permits
to avoid using fixed thresholds, and makes the system
adaptive to dynamical conditions. More precisely, in this
paper we show how the proposed algorithm efficiently reacts
to dynamic scenarios where at a certain time nodes may
change their interests about channels, or when completely
new channels/items are injected in the running system.

II. RELATED WORK

A. Content Distribution in OppNets

In the literature, some works appeared that consider the
problem of content diffusion in mixed fixed/mobile net-
works. In [11], a hybrid infrastructure is considered where
throwboxes– i.e. devices with both wired and wireless inter-
face – communicate with one another and with the wireless
nodes. Nodes upload held items when in the communication
range with a throwbox, and possibly download items that
satisfy local interests. A similar hybrid infrastructure is
considered in [15]. In both proposals, caches are maintained
in the nodes belonging to the wired infrastructure with usual
cache replacement algorithms.

Several works deal with the problem of content dis-
tribution in pure OppNets. In the PodNet Project [14],
a framework is considered similar to that of this work.
Nodes may subscribe to channels of interest. Upon each
encounter, nodes exchange items in order to retrieve those
belonging to the subscribed channels. Then, other items
may be exchanged and loaded in apublic cachein order to
facilitate their dissemination to interested nodes. The items
to be maintained in the public cache are chosen depending
on the channel popularity, but blindly to social aspects.
By contrast, in ContentPlace [1], nodes aim at filling their
caches in order to maximize both the local utility (i.e. the
interests of the local user) and the community utility. The
latter forces nodes to carry items that the local user is not
interested in, but that are of interest for the users belonging
to the same social communities of the local user. For the aim
of item selection, two opposite indexes are considered: the
access probability, i.e. the number of users interested in the
item and belonging to the communities of the local user, and
the availability, i.e. the number of users in the communities
already owning the item.

Some works consider a publish/subscribe framework. Ac-
cording to this, in [16] some nodes are identified asbrokers,
and are in charge to coordinate item distribution and to
convey items to interested nodes. The brokers are the most
popular nodes in terms of social ties and encounters with the
other nodes. In SocialCast [7], nodes distribute information
about the channels they are interested in. Each node uses
this information and its pattern of encounters to compute its
own utility for each interest. When two nodesn1 and n2
encounter, an item is sent fromn1 to n2 if n2 has greater
utility than n1 for the item channel. This approach uses
routing – more than caching – in order to deliver content
to interested nodes. Moreover, it relies on the assumption
that nodes belonging to the same social community share
the same interests.
An extensive survey about content diffusion in OppNets can
be found in [3].



B. Recognition heuristic in opportunistic networks

In [6], a preliminary version of the approach presented in
this work is proposed. For the sake of self-containment, we
summarize here its characteristics. The caching mechanism
is based on two concurrent algorithms:Recognitionand
Modified-Take-The-Best(in the following, for short, MT2B).
The former aims at determining what channels and items
are popular. A channel is popular when many nodes are
subscribed to it. An item is popular when it is held by many
nodes. Upon an encounter between two nodes, the nodes
exchange the set of channels they are subscribed to, and the
list of items they hold. For every channel to which the other
node is subscribed, and every item it holds, a counter is
incremented. When, a channel/item counter is greater than
a thresholdθ, then the respective channel or item is deemed
as popular. Two different thresholds,θC andθI can be used
for channels and items respectively.

MT2B aims at determining what items are useful and
should then be kept in the local cache. The utility of an
item grows with the popularity of the channel it belongs to,
and decreases as it becomes more diffused. According to the
status information maintained by Recognition, MT2B ranks
the items owned by an encountered node for decreasing
utility. In particular, the following rules are used: (i) items
belonging to unpopular channels are considered useless; (ii)
already diffused items are considered useless. Then, subject
to the local memory availability, a node selects the most
useful items and uploads them in its own local cache. In this
sense, channel popularity boosts the caching of (currently)
unpopular items, while item diffusion stops replication in
further nodes.

This approach has two main drawbacks. On the one
side it relies on fixed thresholds to be tuned according
to the environment, the node mobility and their encounter
pattern. Moreover, in presence of highly dynamical scenarios
where new items are continuously created, this staticity of
parameters becomes even more limiting. On the other side,
the amount of punctual state information every node has
to keep in order to take decisions about the diffusion state
of data items can become intractable w.r.t. the memory
constraints to which nodes are subject to (we provide a
quantitative analysis of this point in Section IV). These
characteristics harm the actual suitability of this approach
for its successful application in real world scenarios.

III. PROBLEM STATEMENT AND SYSTEM ASSUMPTIONS

We consider a system composed byN nodes. Nodes can
subscribe to one or morechannelsof interests. We assume
that there areK channels available. Every node can generate
contentitems. Each itemi is labeled with the identifier of the
channel of interest it belongs to,i.ch. A node can generate
items also for channels it is not subscribed to. There is
no global knowledge of the channel subscriptions, nor of
the pattern of encounters among nodes. Nodes have finite

memory availability, thus being unable to store an unlimited
number of items. Items have an infinite lifetime. Yet, new
channels may be created dynamically, nodes can subscribe
to them, and items for them may start to appear.

Due to the lack of global knowledge, nodes have to dis-
cover the system status, and take decisions about what items
to cache accordingly. Caching permits to carry items around
the network till encountering nodes interested in them. As
the primary goal, for each itemi belonging to a channel
ch, the diffusion procedure mustmaximize coverage, i.e.,
maximize the probability that all nodes subscribed toch will
eventually receivei. Taking into account the characteristics
of the OppNets, a secondary goal is to also consider energy
saving and (more in general) resource consumption, by
limiting communication when this does not jeopardize the
coverage.

IV. PROBABILISTIC RECOGNITION

In [6], punctual information for each item and channel
are maintained in order to recognize their popularity. This
leads to a non-negligible amount of memory used that limits
the usability of this approach in real scenarios. In order to
improve the previous approach and make it suitable for large
scale scenarios, we have to reduce the amount of information
a node maintains about its environment by minimizing
the loss of accuracy in terms of acquired knowledge. In
[6], the recognition thresholds for items and channels (θI
and θC , respectively) have a different impact in terms of
diffusion performance. The former plays a more important
role because it regulates the replication level at which a data
item is deemed as recognized and not disseminated further.
Moreover, it is reasonable to think that the number of items
in the system largely exceeds the number of channels. This
means that, in terms of scalability, it is critical to reducethe
overhead related to keep detailed information about items
diffusion (while keeping detailed information about channels
popularity is far less a concern). Hence, in this work we
focus our efforts on the problem of minimizing the state
information maintained about item diffusion, while leaving
unchanged the recognition procedure for the channels. We
reduce the state maintained at nodes by compressing the
knowledge about items diffusion into anaggregatemeasure
that lets identify, in terms of probability, if the items belong-
ing to a given channel of interest are spread enough, so as
to stop their diffusion in favor of other less diffused items.
Let us focus on a generic node, and letSch be the set of
items belonging to a certain channelch, received during an
encountere at timet with another node. Let us finally denote
with Sch

new ⊆ Sch those items that are definitely new w.r.t.
the node experience, i.e. items that a node has never seen
before. We define the measure of novelty a node observes
upon the encountere as:

N(t) =
|Sch

new |

|Sch|
(1)
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Figure 1. Increasing trend ofpch during the system evolution

Informally,the idea behind probabilistic recognition is as fol-
lows. The more times a node receives almost the same kind
of information, the stronger the belief that there is nothing
more to know for that channel. Thus we are interested in
the complement of (1):

1−N(t) = 1−
|Sch

new |

|Sch|
(2)

Equation (2) measures the amount of novelty in the infor-
mation received from an encountered node w.r.t. a given
channel, that we use as an instantaneous indicator of the
diffusion of the items inch. Note that, as explained in
detail in Section IV-B,Sch andSnew

ch
can be computed by

keeping the state information maintained at nodes constant,
irrespective of the number of data items in the system. Let
pch(t) be the estimated degree of diffusion of the items in
ch, at the timet. We aggregate the instantaneous information
collected during encounters with nodes in a unique index, as
follows (assuming thatt is a discrete variable incremented
at each encounter):

pch(t) = α ∗ pch(t− 1) + (1 − α) ∗ (1−N(t)) (3)

where0 ≤ α ≤ 1 regulates the balancing between the past
experience and new information. Figure 1 shows the typical
trend of pch we have observed in our simulation (details
on the simulation settings are provided in Section V). It
shows that as time passes, items become more and more
spread, and the probability of observing new items goes to
zero bringing the diffusion probability close to 1. The index
defined by (3) is used to determine when items of channel
ch are recognized, as described in detail in the following
sections.

A. Preliminaries on the Stochastic Mechanism

In order to autonomically recognize the items diffusion,
nodes exploit the diffusion probability defined in (3). More
precisely, for every known channelch a node deems the
corresponding items asdiffusedor not diffused, according
to a Bernoulli trial with parameterpch(t):

B(pch(t)) =

{

1 ⇒ Items are diffused
0 ⇒ Items are not diffused

(4)

In this way, as long as a node does not receive any new
information about a channelch, the corresponding value of
pch (one for each channel and different for each node) gets
increasingly close to1, straightening over time the belief
that the items ofch are diffused. The drawback of using
in the recognition process an aggregate measure together
with the stochastic approach is that this results in a loss
of granularity w.r.t. the information about the single items
diffusion. However, the benefit is twofold:(i) the nodes can
autonomically adapt to the local scenario, and do not need
to rely on a predefined threshold to be tuned, and(ii) the
randomness of the decision process permits to sporadically
restart the diffusion of almost spread items thus increasing
the probability of reaching those few nodes that for some
reason are not aligned with the mean condition of the system.

B. Resulting Algorithm

In this section, we present how the described approach can
be practically implemented in order to fuse the recognition
heuristic with the probabilistic approach and exploit it in
an opportunistic networking scenario. Before doing so, let
us briefly recall the structure we assume about each node’s
memory space. This is the same used in [6], and is reported
also here for the reader’s convenience:

Data Caches:

• Local Items cache (LI) contains the items generated by
the node itself;

• Subscribed Channel cache (SC): contains the items
belonging to the channel the node is subscribed to and
obtained by encounters with other nodes;

• Opportunistic Cache (OC): contains the most ”useful”
items from a collaborative information dissemination
point of view. These items are obtained by exchanges
with other nodes and belong to channels the node is
not subscribed to.

Recognition cache:

• Channel Cache (CC): whenever a node meets another
peer subscribed to a given channel, the channel ID is
put in this cache, along with a counter.

• Items’ Channel Cache (ICC) : contains the channel
IDs and the aggregate information about the diffusion
probability of items.

• Item Hash (IH): a Bloom filter, used to remember which
items a node sees along meetings.

• Channel Hash (CH): a Bloom filter, used to remember
recognized channels no longer present in CC.

The main logical steps of the data dissemination algorithm
based on probabilistic recognition are as follows (upon
encountering with another node):

1) recognise which channels are popular
2) recognise if the items of a channel are spread
3) fill up the shared memory with the less spread items

for redistribution



Step 1.For every contact between two nodes, each of them
increments the counters associated to the other node’s sub-
scribed channels until a given thresholdθC is reached, after
that the channel is marked as recognized. If the number of
entries in CC exceeds the maximum capacity, then the oldest
entry is dropped. In this case, if it was marked asrecognized,
the channel ID is recorded in a Bloom Filter (CH). In
this way, the nodes can distinguish between channels that
are not in CC because they have never been seen (in this
case they are not in the BF), and channels that have been
replaced. Once concluded the recognition phase for channel
popularities, the second step begins.

Step 2.We will now refer to Algorithm 1. Upon a meeting,
two nodes exchange the content summary of their caches (LI
+ SC + OC). Let us consider the set of item IDs received
and belonging to a same channel (line 9). By querying
a Bloom Filter (IH) that contains the information about
all the items received during past encounters, we count
how many of them are definitely new (lines 11–14) and
update the diffusion probability (line 19) corresponding to
that channel according to equation (3). It is worth noting
that the decision of counting the new items instead of the
replicas is driven by the intrinsic characteristics of the Bloom
Filter. Due to the probabilistic nature of a Bloom Filter,
there is a non-null probability of obtaining a false positive
when querying if an item is present in the data structure.
By contrast, the negative answer is always true, thus we
rely only on definitely negative answers, which may lead,
in principle, in a slight under estimation of the number of
new items, and thus in stopping the diffusion process too
early. Or simulation results show that this has, in practice,
no impact on the effectiveness of the dissemination process.
Once updated the diffusion probability we use it to decide
whether the data items of that channel are recognized or not,
according to a Bernoulli trial with probabilitypch (lines 20–
25). In principle, from a technical point of view the size of
the Bloom filter (IH) should be defined a priori based on
the number of elements to be stored and the desired false
positive probability, being impossible to store extra elements
without increasing the false positive probability. In thiswork,
we explore two possibilities. On the one hand, we use a
Scalable Bloom filter, a variant of Bloom Filters that can
adapt dynamically to the number of elements stored, while
assuring a maximum false positive probability [17]. This
solution guarantees a fixed false positive rate, at the cost of
a modest linear increase of the state size with the number of
items. On the other hand, we also consider fixed size Bloom
filters, dimensioned as a fraction of the theoretical optimal
size (computed with complete information about the number
of data items in the system). This guarantees a constant state
size, irrespective of the number of data items, at the possible
cost of an increase of the false positive rate. Simulation
results presented hereafter show that using fixed size Bloom
filters have no significant effect on the performance of the

data dissemination process.
Step 3.The results of the probabilistic recognition process

are then exploited by theMT 2B algorithm to select the less
spread items to be stored for redistribution. Differently from
the previous version in [6],MT 2B does not fill the OC
by selecting directly between the less spread items but by
selecting between those items that belong to the less diffused
channels. If the current OC capacity would not be enough to
store all the items that could possibly be selected for further
dissemination, theMT 2B sorts the items by theirpch value
and fills up the OC with the firstn items according to its
capacity.

Thanks to this approach nodes have to maintain less state
information than the one maintained in [6]. Let us assume
the Bloom filter size as fixed, and let us denote withK the
number of channels andI the number of items per channel.
In the novel approach, every node has to keep only the state
information about channels, thus the memory requirement
has an order of magnitude ofO(K) because it grows linearly
with the number of channels . By contrast in [6] every node
has to maintain state information for both channels and
items, which means that the order of magnitude in terms
memory isO(K ∗ I). The improvement is very significant,
as in real scenariosI >> K.

V. PERFORMANCE EVALUATION

Hereafter, we evaluate the performance of theProba-
bilistic Recognition through a series of experiments by
which we show that the proposed solution autonomically
converges to or outperforms the results of the best fine-
tuned configuration of the algorithm proposed in [6] with
a significant reduction of resource consumption.

A. Simulated Environment

Nodes mobility is simulated according to HCMM [2], a
mobility model that integrates temporal, social and spatial
notions in order to obtain an accurate representation of real
user movements. Nodes move in a6× 6 grid corresponding
to a1000×1000m square, and are grouped in very compact
communities placed far from each other so as to avoid
any border effect e.g. involuntary communication between
groups. Nodes mobility is limited inside the groups they
belong to, except for few of them calledtravelers, that
are allowed to visit other groups. With this configuration
we want to simulate different social communities where
usually people stay, apart for few of them that due to their
social relationships can meet people from different social
communities. In this context the only way to exchange
data is through nodes mobility, and travellers play an im-
portant role because they are the unique bridge between
communities. In our scenarios we have as many channels
of interest as groups. For each group, all the channels are
present with different popularity degrees and assigned to the
nodes according to a Zipf distribution [4] with parameter



Algorithm 1 Probabilistic Recognition
1: Let M be the set of items received from another node.
2: Let Ich be the counter for the items inM that belongs

to the channelch and are not present inIH
3: Let Cch be the counter for the items inM that belongs

to the channelch
4: Let pch be the diffusion probability of the items that

belongs to the channelch
5: Let B(pch) be a Bernoulli random number generator
6: Let 0 ≤ α ≤ 1
7: Ich ← 0
8: Cch ← 0
9: for all i ∈M do

10: if ICC.contains(i.ch) then
11: if (¬ IH.contains(i)) then
12: IH ← IH ∪ i

13: Ii.ch ← Ii.ch + 1
14: end if
15: Ci.ch ← Ci.ch + 1
16: end if
17: end for
18: for all ch ∈ ICC do
19: pch ← α ∗ pch + (1− α) ∗ (1 − Ich

Cch

)
20: if B(pch) = 1 then
21: Mark items ofch asdiffused
22: else
23: Mark items ofch asnot diffused
24: end if
25: end for

1. Moreover, for each community there is a different most
popular channel. This makes the scenario uniform as far
as channel popularity is concerned, as the same number of
nodes is subscribed to each channel, while the popularity
of channels within individual groups is skewed according
to a conventional model (Zipf law). Every channel has the
same number of items which are initially assigned to nodes
according to a uniform random distribution. The detailed
scenario configurations can be found in Table I.

Paramenter Value
Node speed Uniform in [1, 1.86m/s]

Transmission range 20m
Simulation Area 1000× 1000m
Number of cells 6× 6
Number of nodes 200, 600

Number of channels 8
Number of items 200(25 per channel)
Number of groups 8

Number of travellers 56(7 per group)
Simulation time 25000s

Table I
DETAILED SCENARIO CONFIGURATION

B. Simulation Results
For the sake of simplicity, from now on the acronyms

PR and SRwill refer to the Probabilistic Recognition case
and Static Recognition, i.e. the algorithm presented in [6],
respectively. All the results presented in this paper are mean
values obtained on 10 runs where the initial configuration of
items and channels were randomly reinitialized. We evaluate
the performance of both approaches in terms of hit rate,
convergence time and network overhead. The hit rate at a
given time is defined as the mean value over nodes of the
ratio between the number of items actually present in the
SC of each node w.r.t. the total number of data items of
the channel to which the node is subscribed. Convergence
time is defined as the time instant when the hit rate exceeds
99%. The instantaneous network overhead is measured as the
mean number of items exchanged at a given time instant.

Let us recall that to regulate the dissemination process SR
relies on static recognition thresholds, thus in order to have
a fair comparison, we fine tuned SR parameters for every
scenario. With PR, the nodes exploit the local information
they receive from the surrounding environment to build up
their own representation about the diffusion process that
they use to decide which items are more profitable for
redistribution. This kind of awareness has a great impact
when the OC size is small. Indeed Figure 2a shows that in
a network composed by200 nodes with an OC size of 10
items, PR reaches a hit rate greater than99% more quickly
than SR. The same behavior holds for a more crowded
network also: Figure 2b highlights the distribution ability
of PR in a scenario configured with a network of600
nodes , an OC size of 10 items, and a number of items
significantly smaller than the network size (200). In this
configuration, at the beginning of the simulation, the two
third of nodes are completely unaware about the contents
actually present in the scenario. However, also in this case
the autonomic approach is able to quickly adapt to the
situation reaching complete coverage faster that SR. By
contrast, the two approaches become equivalent when the
OC size is sufficiently large (OC size50 ) to make the item
selection a less critical task, as shown in Figure 2c. To have
a quantitative understanding about convergence velocity we
measure the converge times of the two approaches, which
are in Table II. As we can see the probabilistic approach
outperforms SR without relying on any parameters’ fine
tuning. Compared to SR the probabilistic approach is less de-

Experiment PR SR
Net. Size 200, OC size 10 2100s 3800s
Net. Size 600, OC size 10 4400s 5800s
Net. Size 200, OC size 50 1200s 1200s

Table II
CONVERGENCE TIME FOR A COVERAGE≥ 99%

manding in terms of resource consumption. Figures 3a,3b,3c
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(b) 600 nodes, OC size = 10,(SR:θI = 25, θC = 25)
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(c) 200 nodes, OC size = 50,(SR:θI = 10, θC = 10)

Figure 2. Hitrate trends of PR (black curve) and SR (gray curve) with different network size 200 (a)-(c) and600 (b).
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(c) Detailed view of the second dissemination phase
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Figure 3. Mean number of items exchanged on a network of size 200

give, at different scales, an insight of the mean number
of items exchanged by nodes during the simulation on a
network of200 nodes. As we can see there are two separated
phases in content distribution, the first one (Figure 3b) refers
to the dissemination process inside groups before the arrival

of the travellers in the community. After the65-th second of
simulated time, the dissemination process restarts due to the
presence of travelers inside the community as depicted by
the second phase of the process in Figure 3c. Interestingly,
after some time both phases show a decrease in the number
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Figure 4. Hit rate trend of PR (black curve) and SR (gray curve) after a channel injection at3000s
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Figure 5. Mean number of items exchanged in a network of200 nodes. Channel injection at3000s.

of exchanged items that is an indicator of the convergence of
the diffusion and, even more important, it demonstrates that
PR does not waste resources to retransmit useless contents.
By contrast, in order to maximize the convergence velocity
in SR, the data exchange never stops even when all the items
are deemed as recognized (In that case, according to SR
nodes exchange data items selected according to a uniform
sampling process). Thus, it becomes clear the advantage
coming from the probabilistic approach when compared to
the network load induced by SR, as shown in Figure 3d.
Now we want to study how PR behaves in a more challeng-
ing scenario. At a certain time during the simulation, a set
of new items belonging to a new channel are injected in the
environment. A randomly assigned popularity is assigned to
the new channel, a random set of nodes (of equal cardinality
for each group) is chosen to change their current subscription
in favor of the new channel injected. Due to this change,
these nodes must clean their SC just after having run the
MT 2B algorithm to load in OC possible useful items. At
this point the usual probabilistic recognition approach starts
to be applied also to the new channel. From Figure 4a we
can notice that, in a scenario of200 nodes, after the channel
injection at3000s both PR and SR react to the new stimulus,
though with different intensity. SR seems to be more more
responsive, but let us remember that it has been fine tuned
to obtain this result. By contrast PR autonomically responds
to the channel injection restoring the hit rate trend just after

1000s. This proves that PR well approximate the behaviour
of SR that, due to its fine tuning, represents an the upper
bound for this scenario. Figure 4b shows in more detail this
behaviour. Moreover, in Figure 5 we can see what happens
to the network load when the dissemination process restarts
due to the injection of a new channel both for PR and SR.

Finally, as anticipated before, we present the results of
a sensitiveness analysis to evaluate the robustness of our
approach in presence of an even less reliable diffusion
information about channels. Thus we devised a series of
experiments where the IH size was reduced up to40% of
its initial size, that, in normal conditions is set to the number
of items present in the scenario (200). Results can be found
in Table III where we reported both the maximum coverage
obtained and the corresponding convergence time. These
experiment show that finely dimensioning the size of IH
is not of primary importance. Even when IH is drastically
under dimensioned, PR still archives almost100% hit rate
(even though through a slower dissemination process).

B.F. size reduction 100% 80% 60% 40%
Hit rate ≥ 99% 97% 98% 98%

Conv. time 2100s 4000s 10400s 16300s

Table III
SENSITIVITY ANALYSIS WITH REDUCED BLOOM FILTER SIZE.



VI. CONCLUSION

This paper exploits the very recent idea of using functional
models of the human brain’s cognitive processes to drive
data dissemination in opportunistic networks. Initial work
in this area [6] has exploited the recognition heuristic (a
very well established model in the cognitive psychology
field) to design an algorithm whereby nodes, upon contacts,
recognise (i.e., quickly determine) what data items available
on the encountered node they should fetch to help their
dissemination. In [6] the main focus was on demonstrating
the general viability of this idea, but the proposed algorithm
suffers from significant scalability problems, and must be
fine tuned to obtain optimal results. In this paper we solve
the above problems, by proposing for the first time a so-
lution suitable for concrete implementation in opportunistic
networks. Firstly, in this paper the decisions taken by nodes
are based on aggregate information about data items, and
do not require that they keep state information for each and
every single data item available in the network. Using aggre-
gate information drastically reduces the state maintainedby
nodes, makes the system much more scalable, and suitable
for adoption in large scale environments. In particular, the
state maintained with the algorithm proposed in this paper is
constant with respect to the number of data items available
in the environment, while the approach in [6] the state main-
tained by each node grows linearly with the number of data
items. Importantly, such an improvement in scalability is not
paid with a significant reduction of the performance of the
data dissemination process, as nodes are still able to receive
what they are interested into within a similar amount of time.
Second, in the proposed algorithm nodes use a probabilistic
approach to determine the relevance of data items and the
usefulness of further replicating them. This provides two
key advantages. On the one hand, the proposed algorithm
does not need a priori tuning of its parameters to match the
characteristics of the environment where it operates, but it
is able to dynamically learn the correct behaviour and adapt
it where the environment changes (e.g., new types of data
are injected). Second, even in static conditions it exploits
the probabilistic characteristics to ”change” - once in a
while - the behaviour learnt by monitoring the environment
conditions, and it is thus able to explore new, and possibly
better, configurations.
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