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Abstract—Human beings are involved in a broad range of
social relationships spanning from real life experiences to online
media and social networks. This is leading people to act in
a multilayered complex network whose relationships among
different layers have still to be analyzed and understood in
depth. In this paper, we focus on this problem by comparing
and overlapping the online sociality (Facebook network) and
the offline sociality (encounter network) of a group of students.
First we describe the experiment we performed to trace the
encounters, occurring with people both inside and outside the
group of experimenters, and to gather information about their
online friendships. On the basis of the obtained dataset, we obtain
the relevant complex networks, whose separated analysis lead
us to observe significant structural differences. Moreover, we
study the correlations and overlap between the two interrelated
networks, showing how users’ centralities change in the two
networks. Finally, the information transfer across layers of the
unified complex network enables us to obtain results about the
effects on paths and centrality.

I. INTRODUCTION

If online social networks (OSNs) were to mirror the offline

sociality of individuals, they would be able to reflect offline

relationships and unveil the social behaviors that impact on

online sociality. Unfortunately, there is a growing belief that

today’s social networks are quickly shifting away from their

original goal and, by contrast, sparking fears about the fact that

they are drifting towards a highly connected, unstructured and

flat social graph. The in-depth understanding of relationships

between online and offline sociality, beyond being a key issue

of Human Sciences, would produce the practical effect of

promoting OSNs to the status of best platform for the effective

delivery of mobile computing services (e.g. recommendation

systems, advertising, content dissemination, crowd sourcing,

social discovery, etc.). In fact, the online deployment of these

services would benefit offline social knowledge, for instance,

improving trustworthiness of a service, tailoring it according

to the target’s interests, leveraging context information or

predicting the impact on OSN structure of an upcoming event.

On the opposite end, it would definitely help in deploying

improved mobile services which leverage their online life

features.

The above arguments concern a specific research interest

whose main goal is to understand the relationship between

the two faces of sociality. In this paper, we are interested in

answering the following questions:

• Q1: How do offline and online social networks relate to
one another and to what extent do they overlap?

• Q2: Is a person’s popularity uniform, i.e. more or less
the same in all social dimensions, and how do different
centrality metrics account for people’s popularity in this
multilevel network?

• Q3: How can we embed into a unique complex network
all human social dimensions so as to increase the expres-
siveness of usual metrics?

The challenges in answering these questions are both ex-

perimental and theoretical. On the one hand, although large

datasets describing online social networks have recently been

made available together with an extensive literature, datasets

concerning offline encounters are few and, due to the limitation

of the short range radio technology currently adopted to detect

contacts, combine both explicit and opportunistic contacts.

As a consequence, the research community has very few

opportunities to compare the datasets of offline encounters

and online relationships of the same group of individuals.

On the other hand, while the modeling of a single layer of

sociality has been successfully faced by means of complex

network theory, the merging of interrelated complex networks

still presents theoretical aspects to be investigated.

In this paper we describe an experiment that enabled us

to answer the above questions by exploring the intimate

relation between online and offline sociality of a group of

students. Data describing the offline sociality of a set of 35

volunteers were purposely collected in a time span of one

month and then integrated and compared with relevant data

about their online sociality extracted from Facebook. The two

layers of the group’s sociality were described through the

associated complex networks. Our paper offers the following

main contributions. First, it shows that the overlapping degree
is low; in fact, the sets of Facebook and real contacts are

quite different. Secondly, by comparing the ranking induced

by several centrality metrics, the paper shows that node
centrality is not a universal feature. In fact, node centrality

is not linearly transferred across layers and, as a consequence,

the people’s popularity is most likely to change in different

networks. Finally, the paper introduces a unified complex
network which allows us to merge offline and online relevant

features shedding a light on how human behavior is interwoven
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across layers. To the best of our knowledge, this is the first

paper addressing the above mentioned issues and providing a

set of relevant preliminary answers.

II. RELATED WORK

While there is a very extensive literature on online social

networks, research on offline sociality and how it relates to

online friendships is still in its infancy. Several works have

faced this issue by analyzing mobility traces, also containing

information about social ties between the nodes (from WLAN

Access Point associations [1], Bluetooth contacts [2] [3] [4]

or other technologies [5] [6]). Analysis of such traces has

shown that there is some correlation between mobility and

social connections. However these studies fail to reveal which

nodes would actually experience an encounter during which

they could communicate. Some experiments have attempted

to collect data on offline and online social relationships. Their

main goal is to exploit these data for purposes of designing

opportunistic routing algorithms that take into account online

sociality. The first one, described in [7], gathers contacts

detected by an ad hoc wireless device and the Facebook

graph restricted to the participants. A similar approach was

performed in [8], where they adopt a different contact de-

tection technology. Both experiments suffer from limitations

due to the detecting technology: indeed they detect proximity

and not an encounter between willing parties. A small step

forward came from the experiments in [9] and in [10]. In

[9] the authors developed a Facebook application where a

small group of experimenters reported their daily face-to-face

meetings with other Facebook friends. In this way, however,

only relationships among Facebook friends can be analyzed,

so leaving out all friends in real life who are not Facebook

contacts. In [10] the authors developed an application which

integrates data from online social networks and RFID contacts.

The study of the superposition of networks defined on the

same set of nodes originates from social sciences where it

has been applied to small-scale networks. Only recently mul-

tidimensional relationships have been investigated in socio-

technological networks, addressing specific problems. For ex-

ample, in [11] the authors developed a community detection

method on multiplex and multiscale networks, while in [12]

and [13] the authors introduced new models to represent an

interconnected network of networks and a multidimensional

sociality and extended classical measures to the multidimen-

sional case. Finally, in [14] the authors studied correlations

and overlaps among different kinds of networks by analyzing

the social networks of a massive multiplayer online game.

III. ONLINE AND OFFLINE DATASET

A. Client-server application

The data acquisition about encounters and the Facebook

friendship graph is performed by means of a simple Client-

Server application. The design and development of the re-

quired components were assigned to a class of undergraduate

students in the Computer Science program at the University of

Milano. During the experiment each student used the desktop
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Fig. 1. The number of distinct participants, for each day, who reported at
least one meeting.

Client to record and manage his/her daily encounters in the

personal storage (student-server) along wiht his/her own list

of Facebook friends. All this information can be extracted

by means of a dedicated Facebook application accessing

Facebook API. Data format was checked during the insertion

operation. At the end of the project, all personal records in

each student-server were automatically collected into the main

Server, where they were merged in order to build the social

graph of the experiment.
Each encounter record reported by a student provides the

following information:

• Name and Surname of the person met. The surname is

optional because it might not be known.

• Facebook name: The value of the field name associated

to the object User in the Facebook API. This information

is optional.

• Date in MM-DD-YY format, so as to achieve a variable

reporting interval and thereby avoid the problem of daily

and persistent reporting [9].

B. Dataset description
To form the experiment team, we gathered more than 70

students from different courses and different years. After

the project presentation, 35 out of 73 students volunteered.

They were required to develop their own client according to

specifications, as well as participate in the experiment. In this

type of experiment, initial motivation is essential for obtaining

rich and consistent datasets.
During the experiment’s lifetime, the 35 students met 1,115

other people, while the corresponding total number of Face-

book friends reached 10,291. As clear from these figures,

the great majority of Facebook friends never met during the

experiment.
The experiment lasted for four weeks straight, from De-

cember 13, 2011 to January 10, 2012, including both working

and holiday days. By the end of the first week almost 25

students had completed the development of their application,

so their reporting phase started before Christmas. In Figure

1, we report the number of students who recorded their daily

contacts. We can observe that a stable condition is reached

after about just one week. This is an indication of the fact

that motivations remained intact throughout the experiment’s

lifetime, with no drop in the production of contact events.
We should say a little about the group we are investigating.

The students who took part in our experiment represent a

group with rather homogeneous behavior patterns. Neverthe-

less, as discusses in Section VI, their encounter structure is
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highly influenced by whether they are first, second, third, etc.

year students. Despite that, all students are socially active, as

shown by the fact that the average number of encounters is

roughly 40. Meanwhile, each has an average of 311 Facebook

friends. This mean figure, higher than the 190 reported by

Facebook 1, generated some 10,000 sampled nodes, starting

from a seed of 35 users.

C. Technical Issues and Limitations

A few technical issues about managing and cleaning up the

experiment dataset deserve examination in greater detail.

The need to compare offline and online social networks

advocates a policy to map the set of encounters of each person

onto her/his Facebook ID. The Facebook policy can help us by

stating: ”We require everyone to provide their real names, so
you always know who you’re connecting with.” 2, although

some users, even in our dataset, ignore this advice. As a

consequence, we mainly exploited the Facebook Graph API

to get the user Facebook ID. This kind of request is based on

public information (such as, the ID and the full name) and

does not require any user’s authorization.

Nonetheless, we had to deal with many different conditions

as to the available data. Of course, when the encounter record

contains the Facebook name, the mapping is simply obtained

by querying the Facebook Graph. When the fields ”‘name”’

and ”‘surname”’ are used, the query might return namesakes.

In this case we operate as follows: if one of the friend lists of

the people met is public, we search the encounter name person

and extract her/his ID; if both lists are private, we try to find

the most likely profile leveraging the public information. When

only the person’s name is available, we do not perform any

mapping (5% of the nodes).

Errors might arise because students happen to be unable

to pay attention to details about daily encounters. To enable

some statistical adaptation, we estimate the magnitude of

these errors by evaluating the one-sidedness of the recorded

offline friendship, i.e. when all the records of a relationship

are registered by only one person. We calculate that bilateral

relationships happen on 90% of links, accounting for the

reliabilty of the experimenters.

Finally it is interesting to observe that the approach we

adopted overcomes intrinsic limits of the methodology that

only captures the encounters among Facebook friends. In fact,

we also record the encounters between strangers and between

familiar strangers.

IV. DEFINITIONS

In this section we provide some definitions to formally

describe the two complex networks and the respective inter-

leaving. As a matter of fact, the different layers used in the

experiment, i.e. online and offline sociality, introduce a variety

of nodes and, as a consequence, many types of edges. As for

nodes, we have three sets: Vs, the students involved in the

1https://www.facebook.com/notes/facebook-data-team/anatomy-of-
facebook/10150388519243859

2Facebookpage:https://www.facebook.com/help/?faq=112146705538576

Fig. 2. Example of an inner graph. The red subgraph represents the graph
of the nodes with degree greater than 1. The ”‘leaves”’ of the graph are grey
nodes.

experiment; Vf the students and their Facebook friends; and

Vc, the students and the people they meet.

Based on these node sets, we define the different objects

we analyze and compare:

• We define the undirect Gf = (Vf , Ef ) as the Facebook
graph, where Ef represents the link set retrieved from

the student friend lists, i.e. (u, v) ∈ Vs × Vf belongs to

Ef if u and v are Facebook friends .

• We define the contact graph Gc = (Vc, Ec), where Ec

represents the link set retrieved from the contact record

of the students. Specifically, (u, v) ∈ Vs × Vc belongs to

Ec if u and v experience at least one encounter during

the experiment.

• We extend the contact graph Gc to the weighted contact
graph Wc = (Vc, Ec, wc) by adding a weight function

wc : Ec → R. The function wc((u, v)) assigns to each

edge (u, v) the number of contacts between u and v.

• Let finally be Wfc = (Vc∪Vf , Efc = (Ec∪Ef ), φ, wfc)
the merged graph. The link labeling function φ : Efc →
{0, 1, 2} is defined as

φ((u, v)) =

⎧⎨
⎩

0 (u, v) ∈ Ef − Ec

1 (u, v) ∈ Ec − Ef

2 (u, v) ∈ Ef ∩ Ec

(1)

that is, φ indicates if two nodes have a relationship only

on Facebook, only in real life, or both. While wfc is

defined as

wfc((u, v)) =

{
1 φ((u, v)) = 0
wc((u, v)) otherwise

(2)

It is to note that the wfc definition depends on the dataset

we analyze, in particular, as we do not have information on

the Facebook link weights, we assign the contact weights only

when possible.

Besides, we introduce the notion of inner graph IV1
(G) of

a graph G as the subgraph induced by the set of nodes V1

with degree greater than 1, deleting peripheral nodes, i.e. the

leaves of the graph. This is shown in the Fig.2.
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V. OVERLAPPING DEGREE OF THE NETWORKS

As a first step in comparing the encounter and the online

social network structures, we analyze and confront student

neighborhoods on Facebook and the contact graphs (see Fig.3

and 4). The graph Gf , shown in Fig.3(a), is made up of 10,326

nodes and 10,864 edges. The weighted contact graph Wc is

made up of 1,150 nodes and 1,201 edges. It is visualized in

Fig.3(b), where the thickness of an edge is proportional to its

weight.

We first measure how many Facebook friends a person has

met during the course of the experiment. Results indicate that

on average only 4% of the Facebook friends were met and,

apart from some nodes, percentages oscillate between 0% and

10%.

So far we have considered the direction from Facebook to

offline life. Now we take into account the opposite direction.

We examine the people involved in the encounters, look at

factors such as how many have no Facebook account, how

many are on Facebook but are not friends with one another

and how many are on the social network. As to the first point,

we find that the average number of people met who were not

on Facebook is 18. In particular we observe that for a third

of the students 50% of the meetings involve people not on

Facebook. As for the second variable, we discover 75 people

met with a Facebook account but not Facebook friend with

the encountered. For the last quantity we find that on average

45% of contacts involved Facebook friends.

An important measure used in many friend recommendation

algorithms is the number of common neighbors (overlap) be-

tween two nodes. This type of property represents a similarity

measure for nodes. In fact the higher the overlap the more

the nodes share the same interests and the same features.

Results are in line with previous behaviors, in particular in

the Facebook graph we find 411 common neighbors, but only

15% of them (54) were met during the experiment. This fact

has a big impact on the common neighbor relevance, as it

sheds light on its value as a similarity measure. In particular

this observation makes us wonder about its effectiveness in

cases where common neighbors measure is employed in real

life recommendations.

VI. STRUCTURAL ANALYSIS

The high number of nodes derives from the multiple star

structures associated to each node. They are due to the design

of the experiment, which concerns the description of the

network of a group. The stars are composed by nodes in

the ego-network of someone participating in the experiment

who is not known by any other participant. As for some

metrics, only the network of student nodes and their overlaps

are interesting. We visualize the inner graphs in Fig.4(a) and

4(b). All students are present in the inner graphs since they all

have degree greater than one. Obviously the number of nodes

is considerably lower, 446 and 65 respectively, while the links

number 1,153 and 116. It is interesting to see, in Fig.4(a)

and 4(b), the number of persons who share a relationship

with more than one participant in the experiment. While on

Facebook they number 411, in real life they are only 30 of

them.

A. Connected components

In Fig.3(b) we explore the structural properties of the

Facebook graph Gf of the classroom. As we can see, there

is only a giant component. In other words, each node pair

is connected. While this observation may seem trivial it is

actually not, for the experimental environment is a quite

heterogeneous one, consists of students of different years, and

the network has a very low density equal to 0.012. As we

indicate in the following, this property is due to the presence

of a few nodes that act as a bridge between different groups

in the class. Analogously, in Fig.3(a) we explore the structural

properties of the contact graph Gc of the classroom. We can

promptly note that Gc is not connected; there are, in fact,

6 components. This produces a less connected scenario in

comparison to the Facebook one. The giant component is

composed by 914 nodes and characterized by a low density

(0.014). We must underscore that the remaining components

contain eight students, forming groups marginal to the class.

B. Degree centrality

The simplest centrality measure in a graph is the degree.

We take into account two kinds of degree depending on the

network we analyze. The first type, which we call total degree,

is the usual definition applied to graph G., while the second,

known as inner degree is computed on the corresponding

IV1
(G.). We compute the above quantity both on Gf and on

the unweighted contact graph Gc and on its weighted extension

Wc. Obviously, in Wc we apply the strength of nodes. The last

metric allows us to measure the popularity of a person not only

by the number of friends s/he has but also on the basis of how

often s/he meets with them.

1) Facebook: Observing the Fig.5(a), relevant to the Face-

book graph, we obtain different behaviors involving the same

nodes. In the figure the size and the color of the nodes are

respectively proportional to the inner and total degree. For

example, node 18 has the higher total degree (787) while

its inner (44) is lower w.r.t. the other nodes. To quantify

the agreement between Facebook importance and classroom

importance we perform a rank correlation analysis. Rank

correlation analysis allows us to test if the ranking induced

by the different degrees is similar or not. As a rank corre-

lation method, we compute the Spearman’s rank correlation

coefficient ρ on the ranking induced respectively by total and

inner degree on Vs. We obtain ρ = 0.4, which indicates

that the two degree measures induce different rankings. So,

some nodes, relevant for example in Gf , lose their importance

in the relative IV1
(Gf ). An explanation of these changes is

rooted in the numbers of common neighbors in the induced

subgraph IV1
(Gf ). In fact, nodes with a high total degree

and a small inner degree have few neighbors and share few

connections with other nodes in the subgraph. Generally, the

above results suggest that Facebook popularity is not uniform

among groups a person belongs to and so people with a
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(a) (b)

Fig. 3. Fig.3(a) and 3(b) respectively represent the Facebook graph and the weighted contact graph, where link size is proportional to its weight. In all the
graphs, red nodes represent the students.

(a) (b)

Fig. 4. Fig.4(a) and 4(b) are the corresponding inner graphs IV1
(Gf ) and IV1

(Wc) of 3(a) and 3(b). In all the graphs, red nodes represent the students.

high overall importance may not be popular in a specific

community. We find that students have an average degree equal

to 312 and a 0.8-quantile equal to 447. As for the induced

subgraph IV1
(Gf ), the average student degree is 35, while the

0.8-quantile corresponds to 52.

2) Encounter: We analyze the degree distribution of Gc and

Wc to highlight the number of people met and the number of

contacts per person. In particular we focus only on the degree

of the students, since for the other nodes we have incomplete

information. The degree results are presented in Fig.5(c). In the

figure the node color is proportional to its degree computed on

Wc, while the size is proportional to the one computed on Gc.

On average the number of people met by each participant is

37 and the average number of encounters is 125. As suggested

by the figure and by the Spearman coefficient ρ = 0.6, a clear

relation between the degree and its weighted version does not

exist; actually, there are many nodes having a high degree yet a

color that indicated a medium-low weighted one. This explains

why maintaining many close friendships proves difficult.

We also compare the different degrees nodes have in Face-

book and encounter networks. By analyzing the Spearman

coefficient matrix, we find quite heterogeneous results. For

example, the Facebook total degree quite positively correlates

with the inner degree in the contact graph, while, at the same

time, it has no correlation with the total degree in the contact

weighted graph. Generally, we have shown that the centrality

measure given by the degree does not maintain the rank, so

that popularity in Facebook does not correspond to the same

popularity in the encounter networks.

C. Eigenvector centrality

We calculate the eigenvector centrality defined by x′ =
λ−1
1

∑
j ai,jxj where A is the adjacency matrix of the graph

and λ1 is the largest eigenvalue of A. The eigenvector cen-

trality relates the node importance to the importance of its

neighbors; in particular it may be large either because a vertex

has many neighbors or because it has important ones.

1) Facebook: In Fig.5(b) we can see this effect at the

bottom right of the graph; in fact, node 2 gains its centrality

from its numerous neighbors and conversely spreads its value

among them. In this respect, comparing Fig.5(a) and 5(b),

we can see that the degree centrality is different from the

eigenvector centrality: specifically node 17 has a high degree

yet is connected to nodes low in importance.

2) Encounter: As to this measure, we calculate the eigen-

vector centrality considering IV1
(Gc) and IV1

(Wc) on each

component of the relative graph. In particular, in the weighted

case we apply the general centrality proposed in [15] which

still corresponds to the leading eigenvector of the adjacency

matrix, with matrix elements being equal to the edge weights.
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(a) (b)

(c) (d)

Fig. 5. Fig.5(a) Facebook graph: size and color (from white to red) nodes are respectively proportional to the total and the inner degrees. Fig.5(b) Eigenvector
and betweenness centralities: size and color nodes are proportional to their eigenvector centrality and betweenness centrality. Fig.5(c) Unweighted contact graph:
size and color (from white to red) nodes are respectively proportional to the total and the inner degrees. Fig.5(d) Eigenvector and betweenness centralities:
size and color nodes are proportional to their eigenvector centrality and betweenness centrality.

The meaning of this measure is quite similar to the one in a

citation network. In fact, if we use the frequency encounters

as link weights, eigenvector centrality would then give people

high ranks in either of two cases: when they are met by many

others and if they meet frequently with a few others. Weights

play a fundamental role in comparing the ranking induced

by the two measures; in fact, analyzing only the two most

numerous components, we find opposite results. In one case

we observe a strong monotone increasing relation between the

weighted and the unweighted centrality (ρ = 0.8), while in the

other we observe a substantial lack of correlation between the

variables (ρ = −0.3). These results depend on the distribution

of the weights: in one case the highest weights are among

central nodes, in the other case the opposite is true.

If we consider both Facebook and encounter networks,

we find results which shows a substantial lack of correla-

tion among the eigenvector centralities of the student nodes

computed on the different graphs. In fact for each pair of

centralities involving the Facebook and the contact graphs,

we obtain correlation values near to zero. Also in this case,

these findings claim the observation that eigenvector centrality

is not linearly transferred across layers.

D. Betweenness centrality

A different concept of centrality is betweenness centrality.

It captures the extent to which a node is on paths between

other nodes. We may formally define the betweenness of the

node i as

bi =
∑
s,t∈V

ni
st/gst

where ni
st is the number of shortest path from s to t passing

through i and gst is the total number of shortest paths from

s to t. The betweenness measures the amount of information

passing through each vertex, if it follows the shortest path.

Therefore, nodes with high betweenness may have a high

influence due to a sort of control over the information passing

among nodes.

1) Facebook: Betweenness values are depicted in Fig.5(b)

where the node dimension is proportional to them. As ex-

pected, the betweenness values are different from the other

centralities. In particular, node 17 gains the maximum be-

tweenness in that it acts as a bridge among the different areas

of the graph 3.

3Closeness centrality shows values similar to the betweenness centrality
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2) Encounter: In the Fig.6(a) we report the values of the

betweenness centrality computed on the simple and weighted

induced subgraph, where the weights are equal to the inverse

of the value returned by the wc up to a scaling factor which

flavors paths passing through strong links. Comparing the

relative values, we can observe how the introduction of the

weights changes some node centralities. In particular, weights

enhance the probability that information passes through some

paths. For example, if we consider an unweighted graph

and two minimum paths between two nodes, the probability

that a message follows one of them is an even split. In the

weighted case, the path might be unique concentrating all the

probability in it. We can observe this phenomenon in node

14 values where in the unweighted case the betweenness is

distributed between 15 and 14, while strength force paths to

pass through 14. As reasonable to expect, weight introductions

not only changes the betweenness values but also the ranking

the student nodes. In fact, Spearman coefficients measured on

each pair of betweenness types show uncorrelation between

the different centralities. Therefore, even on the social dimen-

sion (offline sociality) a node can assume different relevance

depending on the features of the network we consider.

In comparing the two social layers by the Spearman co-

efficient matrix, we find results in accordance with the one

presented in the above paragraph. In fact betweenness cen-

trality values on the student set are almost uncorrelated. This

further corroborates the fact that betweenness centrality does

not transfer monotonically too.

E. Small world properties

To see if our network presents a small-world phenomenon,

we analyze the average clustering coefficient C and the

average path length L. L is the number of hops in the shortest

path averaged over the pairs of nodes, while C is the average of

Cv . Cv is defined as the fraction of edges that exists between

all the possible links connecting the neighbors of v. We have

a small-world situation if L is similar to Lrand (characteristic

shortest path of a random graph with n nodes and average

degree k equal to the real one) and C >> Crand. We perform

the following computation only on the induced subgraphs

because the star structures in the corresponding graphs would

artificially decrease the average clustering coefficient.

1) Facebook: Comparing the above computed quantities,

we can see that our network is a small-world one as L = 3.55
and Lrand ≈ ln(n)/ln(k) = 3.65 while C = 0.73, which

is much greater than Crand ≈ k/n = 0.012. In general the

Facebook network contains nodes that are high clustered and

a few shortcuts that reduce the distance between the nodes.

In the Fig.5 the role of shortcut is played by the central

area around the node 17, which links link the different high

clustered groups. In fact, as many paths pass through the center

of the graph the most likely distance is 3.

2) Encounter: As for small-world properties, the induced

subgraph is quite cryptic to classify. In fact the average

clustering coefficient C = 0.764 is greater than the expected

one in a random version, i.e. Crand = 0.053, while the average

path length L = 4.03 is greater than Lrand = 3.33 and

the diameter is equal to 7. So, as shown in Fig.5(d) , the

structure presents highly clustered regions (explaining the high

C) connected through few links (explaining the path features).

In particular, we can observe a sort of backbone, comprised

naturally by the nodes with high betweenness centrality.

VII. MERGING THE COMPLEX NETWORKS

In this Section we analyze the merge graph Wfc. Our main

goal is to blend the two social layers in a unique network and

check if student nodes, in this merged scenario, maintain their

centralities or the merging modify the ranking among nodes.

In the following analysis we adopted the same methodology

applied in Section VI. In particular we compare total and inner

degrees, eigenvector centrality and betweenness centrality on

the graphs Gf ,Gc,WC ,Wfc,Gfc (unweighted version of the

merge graph) and their induced subgraphs. In general Gf

influences the most of the measured centralities on the merge

graph because of its denser and more compact structure.

That happens despite the weight function flavors links that

correspond to encounters.

As for inner and total degrees, we find similar results so we

only present the one on the second variable. First we observe

a strong correlation between the total degree on Gfc and Gf

as the number of Facebook friends is much higher than the

encounter one. Otherwise the total degree on Wfc correlates

with the total degree on Wc and Gc as the bias introduced by

wfc.

The eigenvector centrality measured on Wfc and Gfc has a

particular meaning as it mixes the contribution of the degree

and the connectivity of the two sociality layers. Furthermore

in the weighted case it depends on the attitude a nodes has

to connect with other important nodes through the strong link

given by the contacts. By analyzing results we obtain that the

eigenvector centrality on IV1
(Wfc) positively correlates with

that on IV1
(Gf ). An interesting result concerns the central-

ity on Wc, in fact it correlates with Gf and unexpectedly

negatively correlates with Wc. This shows that the Facebook

connectivity differently allocates the centrality portion given

by the strong links. We observe the same effect in the

betweenness centrality where in Gfc and Wfc, it correlates

with the betweenness measured on Gf .

As the strong influence of the Facebook graph we investi-

gate how weights act on the different centralities of student

nodes only on the Facebook relationships. We compare Fc and

Fw, i.e. the induced subgraph of Wfc containing links with φ
values equal to 1 or 3. By comparing the Spearman coefficient

of each centrality, we find a strong correlation between the

total weighted and unweighted degree. This fact can be ex-

plain by the low degree of overlapping between contacts and

Facebook friends seen in Section V. An opposite result has

been observed on eigenvector centrality. For this measure we

observe a low negative correlation (ρ = −0.33). So the weight

insertion drastically changes the importance a person acquires

in the network. Last we consider the betweenness centrality
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Fig. 6. Fig.6(a) Betweenness centralities measured on IV1
(Gc) and IV1

(Wc). Size and color nodes are proportional to their weighted and unweighted
betweenness centrality. Fig.6(b) Merge graph Wfc: link color indicates the value of the link labeling function φ: 1 (blue), 2 (green) or 3 (red). The link size
is proportional to its weight assigned by the function wfc.

on Gf and Wf . In this case we obtain a ρ value equal to

0.6. This finding implies that the ranking does not drastically

change, although, also in this case, some ranks consistently

increase or decrease.

In general we observe that the merging of the two social

networks induces a different ranking on the set of the student

nodes and that the Facebook structure and the weights inferred

from play a fundamental role in making the centralities always

different.

VIII. CONCLUSION

In this paper we describe an experiment that explores the

intimate relation between online and offline sociality of a

group of 35 students. The two layers of the group’s sociality

were described through the associated complex networks. Our

work shows that the overlapping degree is low as the sets

of Facebook and real contacts are quite different. Secondly

the paper shows that node centrality is not a universal feature

so that the people’s popularity is most likely to change in

different networks. Finally, the paper introduces a unified

complex network which allows us to merge offline and online

relevant features shedding a light on how human behavior is

interwoven across layers.
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