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Abstract—TIn this paper we focus on mobile data offloading and
propose a solution for the placement of offloading infrastructures
that optimizes the trade-off between reducing deployed resources
and increasing traffic breakout. We base our analysis on a real
dataset of Internet accesses generated, in the city of Milano,
by some 50,000 users of an important mobile network operator.
The target application we consider is the distribution of digital
contents (such as MP3 songs, videos and newspapers) over an
urban area. The paper’s contributions is showing that offloading
of digital contents can be achieved by leveraging people’s regular
mobility patterns.
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I. INTRODUCTION

Today’s core network of mobile operators, as well as the
relevant radio access networks, are affected by unprecedented
volumes of data traffic that will keep on growing at the
estimated mean annual rate of 78% from 2012 to 2016 [1].
Operators are therefore in urgent need of solutions that focus
on network capacity scaling, that reduce the rate of expensive
infrastructure upgrades and that limit resorting to use pricing as
a congestion control tool. The selective offload of data traffic
is now considered to be the most promising solution to the
problem.

This paper deals with offloading from the perspective of a
mobile operator that has planned the deployment of the offload
infrastructure in a given metropolitan area based on LTE archi-
tecture. Such an operator is in need of a quantitative approach
to plan and dimension the placement of the infrastructure, as
well as to minimize installation costs while maximizing the
volume of data traffic routed outside its core network.

The key premise of the paper is the privileged access to a
portion of a real dataset of Internet accesses generated, in the
city of Milano, by some 50,000 users of an important mobile
network operator. By combining a tightly integrated offload
architecture and the analysis of a real dataset, in this paper
we show that an offloading infrastructure may be placed by
simply leveraging regular human mobility patterns. We provide
a preliminary evaluation from the operator’s perspective to
show that the tradeoff between the offload infrastructure costs
and the amount of offloaded data contents can be optimized
in a practical scenario. Finally, by assuming to equip the
offloading platform with data kiosks, we sketch the design
of a proactive content distribution service for the metropolitan
area of Milano.

II. DATASET DESCRIPTION

The real dataset we use in the following analysis contains
data about the Internet activities of a set of anonymized users
of a leading mobile operator in Italy. Data are limited to users
moving in the metropolitan area of Milano. The time window
of the dataset spans from 14th May to 27th May, for a total
of two weeks. The first week has been used to model the
service, while the second represents the dataset we adopted
to run simulations. Each user’s activity is recorded with the
following information: date, time, cell ID of the cell where the
session started. It is worth observing that the user’s location is
based on cells where the s/he is active, namely the access cells,
or ACs, and we have no information about the user’s position
during the inactive periods. We preprocessed the dataset in
order to identify the users who are relevant to our goal. We
consider only those users active each day (a user is active
when s/he generates at least one activity per day). Moreover,
the selection applies to working days only, because mobility
patterns and content requests are very different during the
week-end. Finally, as a consequence of the fact that we are
considering a service where mobility plays a central role, we
limited the users in the dataset to those visiting at least two
different cells every day.

After the preprocessing we obtained a dataset of 49,067
users who were active in up to 1,716 cells. This is the set we
will consider throughout the paper.

III. THE PLACEMENT OF OFFLOAD INFRASTRUCTURE

In this section we deal with the problem of deploying
the offload infrastructure by equipping the minimum set of
operator’s cells. The goal is to reduce the installation costs
for networking resources while ensuring high volumes of data
offloading. Initially, we will assume a push content delivery
schema, that is, the service autonomously pushes contents
to the users as soon as they happen to be under coverage
of cell selected by the operator. To this purpose, a deeper
understanding of the user’s attitude to generate traffic over the
cells would enable us to identify the subset of the 1,716 cells
that will be involved in the deployment process.

A. Cell-based Activity Patterns

To approach the described problem, we extract all per-user
activity patterns, where an activity pattern is defined as the set
of cells where a given user is active.

We initially consider the overall number of cells involved
in the activity patterns of users during the first week; for each
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Fig. 1. (a) Histogram of the number of cells accessed by users during the entire week (from 8:00 A.M. to 6:00 P.M.). (b) Histogram of the mean (over a week)

number of cells a user accesses during a day (from 8:00 A.M. to 6:00 PM.).

user we compute the number of different cells he/she accesses
during the whole first week and we show the related histogram
in Fig. 1(a). The mean value of 19 cells and the median of 16
show that, apart from a tail of users accessing a very large
number of cells, most have activity in a few ACs per week.
This behavior is even more evident if the same quantity is
considered on a daily basis.

In Fig. 1(b) we report the histogram of the mean (over the
week) number of ACs accessed by user in a day. In line with
similar studies [2], [3], [4], [5], [6], most users are active in
very few different locations/cells (mean: 6, median: 5), while
a very small percentage of individuals show a higher mobility.

To properly target the deployment phase, the operator must
understand whether or not the set of ACs is changing daily.
We extract this information by analyzing the set of per-user
regularly accessed cells during the considered week. We have
found that 60% of users have at least one favorite cell that
they access daily.

The above results clearly state that individuals are accus-
tomed to following regular mobility patterns that include a
small number of ACs visited daily. This information must be
combined with the minimum number of cells required to serve
a single user during the entire week. We have found that more
than 90% of users require only two cells at most: 60% require
one cell, the remaining 30% of users require only two cells.

B. Minimizing the number of cells

In this section we face the issue of finding the best selection
of cells where to deploy the offload infrastructure. The set of
above per-user preferred cells may be a good candidate for
the deployment. In fact, by placing the offload infrastructure
and by proactively caching the contents according to a per-user
subscription, the operator would certainly be able to daily push
the subscribed content to all users, thus ensuring that 100% of
the offload data are efficiently routed outside the core network.
Nonetheless, the general operator’s achievement of the highest
traffic breakout at the lowest cost can be pursued by attempting
a cell optimization that selects cells shared among different
users. For this purpose, we solve an instance of standard
formulation of Set Covering applied to the first week of the
dataset.

Our minimization problem is constrained to ensure cover-
age to all users for all days of the chosen week. The problem

is defined as follows:
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where C' is the set of cells accessed by users during the first
week, a(u, ¢, d) is a binary coefficient set to one iff the user u
accessed to the cell ¢ the day d, while z. is a binary variable
set to one iff the cell ¢ belongs to the optimal solution. Users
is the set of all users, and Days is the set of the five working
days of the first week. The constraint of Eq. 2 ensures that
each user is covered by at least one cell in each day of the
week.

The number of cells resulting from the optimization prob-
lem is 1,081, the 63% of the total. In the following we will
refer to this set of cells as C,. Despite the strong constraint, we
have obtained an encouraging result which allows the network
operator to bound the deployment spending, while covering all
users. We evaluated this optimal placement with the dataset of
the second week, still considering a content push approach. By
leveraging the strong regularity that users show in their activity
patterns (as shown in Sec. III-A), the placed infrastructure
ensures more than 95% of successful offload of the considered
traffic.

IV. A PULL APPROACH TO CONTENT DELIVERY

The push approach we considered so far is highly effective
but slightly operator centric. In fact, it assumes that users
accept a delivery service that autonomously pushes contents to
them when they happen to transit under coverage of the cell
selected by the operator. This can be effective in practice for
a subset of contents but not for their totality. Many users may
actually be willing to freely access their contents anytime and
anywhere by pulling them from the Internet. In the following,
we consider such a pull approach and we evaluate whether the
described optimal placement remains effective under changed
access conditions. To evaluate this new setting, we randomly
select, for each user, 40% of his/her daily cell accesses and we
use them to describe the users’ requests for digital contents.

As a first performance index, we evaluate the amount
of requests we can serve through the offload infrastructure
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(a) Network traffic load from 8:00 A.M. to 6:00 P.M. of a representative day. Each bar covers an interval of 10 minutes. Black bars show the traffic

load of offload network, grey bars show the traffic load of core network. The sum of the two bars show the traffic load of entire network. (b) Percentage of

offloaded requests.
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and compare them with those served through the operator’s
core network. In Fig. 2(a) we report the traffic (aggregated
in bins of 10 minutes) along a sample day, with all days
behaving quite similarly. The black bars report the number
of offloaded requests, while the grey bars report the number
of requests served by the core network. The sum of both
bars is the total number of users’ requests. While the overall
number of requests grows along the morning, has a peak in
the launch pause and then remains quite constant during the
afternoon, the percentage of offloaded traffic remains stable,
as shown in Fig. 2(b). In fact, the traffic breakout remains
quite stable, around 80% of the total. This is a good result
from the operator’s perspective, for it shows the viability of
the placement under different settings of access distribution.

From a user perspective, we assume that a mobile user
may experience a somehow improved service efficiency when
exploiting the offload platform. This argument makes inter-
esting to estimate how fairly this opportunity is distributed
among the set of users. Such a measure highly depends on the
considered dataset, however, under our setting, the percentage
of requests offloaded in a representative day is reported in
Fig. 3(a) showing that about 45% of the users have all requests
served by the offload infrastructure, while only few users
experience less than 50% of requests offloaded.

We then enlarge the analysis window to the whole second
week and report the results in Fig. 3(b). On a weekly basis,
the performances are very satisfying; overall, 95% of users can
experience improved performances in more than half of their
requests when compared to core-routed traffic.
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(a) Histogram of users’ percentages of offloaded requests in a single day. (b) Histogram of users’ percentages of offloaded requests over the entire

V. THE PLACEMENT OF DATA KIOSKS

We assume that the offload platform includes data kiosks
which we envision to exploit for enhancing mobility support in
a news delivery system. In particular, we consider the delivery
of newspapers, a very common data content. Contents are char-
acterized by a sort of durable subscription [7] where kiosks
cache the subscribed contents, independently of whether the
user is connected to the associated cell or not, for a specified
time of content validity (one day and one week, respectively).
For the purposes of this paper, we do not further differentiate
subscriptions inside each content category and assume that
newspapers are mostly accessed in the time window from
8:00 A.M. to 11:00 A.M.. In this caching system, contents are
replaced daily or weekly, according to the class they belong to.
We want to define a cell selection process to proactively cache
contents based on the knowledge of the regularity of activity
patterns of subscribers. The problem to solve in this case is
slightly different w.r.t. the aforementioned one: here, we use
the first week in the dataset to identify the per-user subset
of most visited cells and we place the subscribed content in
the associated kiosk. In practice, we leverage the regularity of
user mobility to increase the probability of finding the cached
content when the user will generate his/her content request
during the second week.

The resulting new matching function f,(c) to each cell and
for each user u is as follows:

fulc) = edu() Z wy, (¢, d) “4)
deDays

where c represents a cell, d,, is the number of days in which



the user u accesses cell ¢, w (¢, d) is the number of accesses to
cell ¢ during the day d and Days is the set of trial days. This
function allows us to consider, for every cell and for every user,
both the number of accesses in a day, w,, (¢, d), and the number
of days it has been accessed by the user, e®(¢). For each user
u, cells are ordered by descending matching values and the
first n elements are selected as favorite cells. Thus, we denote
with C,, the set of the favorite cells of user . In the following
analysis we consider n = 3, being other cells not relevant
according Section III-A. In the optimization process only the
subset of favorite cells belonging to the offload infrastructure
(C, N C,) is considered. If the intersection between C,, and
C, is empty, then the user is discarded because it will not
benefit from the offloading infrastructure anyway. Thus, the
set of cells where minimization will take place is C'y defined
as:

Cf = Co N {UuGUsersCu} (5)

As above, we find the optimal set of cells for the whole
set of users by solving an instance of the set covering problem

defined as follows:
min Z T (6)
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where z. is a binary variable set to one iff the cell ¢ belongs
to the optimal solution.

Optimization is performed using mobility data of the first
week while network access simulation is performed using the
second week. User content retrieval is simulated by randomly
selecting one cell access per day in the time window planned
by the service, since we suppose that each user submits only
one request during a day.

After optimization, we are left with 993 cells where
caching is required (92% of total infrastructure cells). This
scant reduction is due to the limited number of cells accessed
during the morning. As a matter of fact, the ratio between the
number of cells accessed in the morning and those accessed
during the whole day is 0.88, meaning that most cells are
accessed later in the day.

By analyzing the performance from a network operator
point of view, we obtain the results depicted in Fig. 4. In the
figure, we report the traffic (aggregated in bins of 10 minutes)
along one representative day, being all days very similar. Black
bars show the traffic load of offload network while grey bars
show the traffic load of core network; the sum of the two bars
is the traffic offered to the entire network. The percentage of
traffic offloaded is, in the average, 70% of the total traffic.

From the user perspective, the best download performances
are experienced when the content is accessed by means of data
kiosk. To evaluate these performances, we compute for each
user the percentage of requests satisfied in offload. The related
histogram on all users is reported in Fig. 5. As we can see,
35% of users are always satisfied by the offload infrastructure,
while more than 70% of users are satisfied more than half of
the times.
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Fig. 4. Network traffic load from 8:00 A.M. to 11:00 A.M. of a representative
day.
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VI. CONCLUSION

This paper presents preliminary analysis of a real dataset
of Internet accesses generated, in the city of Milano, by some
50,000 users of an important mobile network operator. On this
base we have been able to (i) extract a well optimized subset
of cells, based on users’ activity pattern, where the proactive
caching service can be deployed to reduce costs and (ii) to
evaluate performances for the proposed solution in real urban
settings. The preliminary results indicate that offloading can
be easily managed and planned by network operators and that
the approach needs to be tightly interwoven with the emerging
LTE’s femtocell architecture.
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