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ABSTRACT
People mobility enormously augmented in the last decades.
However, despite the increased possibilities of fast reaching
far places, the places that a person commonly visits remain
limited in number. The number of visited places of each per-
son is regulated by some laws that are statistically similar
among individuals. In our previous work, we firstly argued
that a person visit most frequently always few places, and
we confirmed that by some initial experiments. Here, in ad-
dition to further validating this result, we build a more so-
phisticate view of the places visited by the people. Namely,
on top of our previous work, which identifies the class of
Mostly Visited Points of Interest, we define two next classes:
the Occasionally and the Exceptionally Visited Points of In-
terest classes. We argue and validate on real data, that also
the occasional places are very limited in number, while the
exceptional ones can grow at will, and by the analysis of the
classes of visited points we can distinguish the type of users
mobility. This paper firstly demonstrates this property in
large experimental scenario, and put the basis for new un-
derstanding of people places in several areas as localization,
social interactions and human mobility modelling.
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1. INTRODUCTION
In this paper, we introduce a classification of the points

of interest visited by people and this allows us to define a
general profile of people, characterized by the number of lo-
cations and time spent there per class. We first elaborate on
existing works on human behaviors and especially on their
analysis in terms of the social world around people, arguing
that similar properties are present in terms of human mobil-
ity and visited points. Then, we present our experimental

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PerMobi 2013 San Diego, US
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

approach in Section 3, starting from the Microsoft traces [11]
and presenting the huge pre-processing work. We dive into
the obtained results, their meaning and statistical evalua-
tion in Section 5. We use the results to separate the visited
points into 3 classes (Mostly, Occasionally and Exception-
ally Visited Points of interest - MVPs [6], OVPs, EVPs)
and show that, on average, people frequent just few points,
but they are frequented for more than 50% of the time. Also
the OVPs are low in number, and they are visited for about
10%, while the remaining points, the ones in the EVP class
are visited for a very short amount of time.

2. BACKGROUND AND MOTIVATION
Recent faster transportation methods have made people

mobility very common for both businesses and daily life.
In addition, advances in communications technology, data
analysis and smart infrastructure are enabling to stream-
line the transportation strategies, simplifying connections
and shortening the commuting times. These two aspects to-
gether resulted in a high mobility degree for many people,
both for their business or as a lifestyle. However, despite
the higher mobility degree, we argue that the MVPs, the
places that a person visit more frequently and thus were a
person can be caught with higher probability, are still a lim-
ited number. Mid 90s, Strogatz and Watts [10] were mod-
eling the famous ’six-degree’ property of Milgram, giving
birth to the small world phenomena era: the average path
length for social networks of people was established to be
six. In 1992, Dunbar measured the correlation between neo-
cortical volume and typical social group size [2]. He showed
that, because of the limit imposed by neocortical processing
capacity, people can have stable interpersonal relationships
with only a limited number of individuals. Thus, the Dun-
bar’s number is the measure of the humans’ social network
size, and is between 100 and 200 individuals [3]. In addi-
tion to the neuro-scientific limits, we can also individuate
some physical constraints, as our time and interests are fi-
nite and therefore we cannot have (strict) social interactions
with the whole world. Both results concur to give a sur-
prising view of how our social world is ”small” (connected
with small number of hops) and cannot go over certain lim-
its (we have limited numbers of strong connections). We
argue that, similarly, our physical world is small and can-
not go over certain limits [7]: we can commute, with small
number of hops, between very far places, but the number of
points that we frequently reach is limited. Intuitively, the
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fact that we can commute everywhere, with small number
of hops is clear, but the fact that our mostly visited points
are few is not so evident, especially if we consider the evo-
lution of our society toward a very dynamic lifestyle. Thus,
regardless the increased attractiveness of a place or the pos-
sibility to reach places more quickly, people will keep on
moving around their limited number of MVPs (Giordano-
Papandrea class of Points of Interest [6]) for most of their
time. In this work, we present some initial analysis on a
real dataset. We show that our intuition is validated by the
empirical results, and also that we spend more than 50%
of our time in those MVPs. This indicates that, willy-nilly,
those points are the ones that better represent and charac-
terize our life. We show that we can also go further, using
the time spent in each class to distinguish different types
of human mobility profiles: the stay-at-home users, with a
very low time spent in the EVPs, and the globetrotter users,
which, as opposite, present a very high time within EVPs.
Our result could impact on several areas as: localization [9],
where it can be predicted that people are in MVPs with a
probability higher than 0.7; social interactions [5], as people
tend to meet more frequently people with some MVPs in
common; human mobility modelling [12], as mobility can be
described in terms of movement among MVPs.

3. DATASET
In this paper we use a very large GPS dataset recording

the movement of 178 people in a period of over 4 years (from
April 2007 to October 2011). It was collected in GeoLife
project and released by Microsoft Research Asia [11]. Peo-
ple participating to the experiment are students, government
staff and employees from Microsoft and several other com-
panies equipped with GPS loggers or GPS-phones. Overall
the dataset provides 17,621 trajectories with a total distance
of 1,251,654 kilometers and a total duration of 48,203 hours.
With respect to other datasets with mobility data collected
in a limited area or in a particular context, Geolife dataset
offers a high heterogeneity. As a matter of fact, it contains
a broad range of users’ outdoor movements, including both
everyday routines imposed by working activities and free
time activities.

Besides having been conducted over a long period of time
and involving a high number of users, this dataset is inte-
resting also for its temporal and spatial fine granularity, as
91% of the GPS trajectory are recorded in a dense represen-
tation, every 1∼5 seconds or every 5∼10 meters per point.
This allows us to precisely capture Points of Interest (PoIs)
associated to the different activities an user undertakes.

If on the one hand the dataset is very rich, on the other
side it exhibits a high level of fragmentation, especially with
regard to features as the effective duration of the trajecto-
ries, the data collection period and the number of trajecto-
ries per user. Indicatively, more than half of the trajectories
span less than one hour, while about 60% of users collected
data for less than a month. Furthermore the dataset covers
a large area of the earth from Europe to USA to Asia, al-
though it does not represent a problem as the major part of
the data is located in Eastern Asia, in an area corresponding
to the region around Beijing. We limit our analysis to GPS
data collected in this area, as our main goal is to characterize
the most visited PoIs.

3.1 Dataset pre-processing
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Figure 1: ECCDF of the aggregated pause times in
the stay-locations.

Although GeoLife represents the most reliable dataset pub-
licily available, it was not collected to extract PoIs and thus
we need to pre-process trajectories in order to find the most
meaningful ones to our goal. The need of a pre-processing
phase is dictated by the dataset bias which flavors move-
ment, while we are interested in people still in their PoIs. In
particular we aim at densifying trajectory points correspond-
ing to the pause phase by a filling heuristic, while removing
points belonging to users’ movements.
Indoor filling Mobility data collected by GPS devices

present gaps because GPS signals are often disrupted inside
buildings. This represents a big problem, especially if one is
interested in detecting the PoIs of a user. In fact, in many
cases, buildings or other indoor locations represent the most
of the PoIs visited by a person during the day. To overcome
the problem given by missing records [8], so to avoid an un-
derestimation of the number of PoIs, we apply the following
simple rule. When the ending and beginning GPS points of
a gap are within a distance of 35 meter and the gap dura-
tion is greater than 5 min, the user is taken as residing at
the same location during that time. This rule also supplies
for the situation where the individual enters a building, or
where the individual turns off the GPS devices in an indoor
place. Practically, we add as many GPS points equal to the
entry point as the duration in sec of the gap. After the tra-
jectory reconstruction phase, we noticed a big increment of
points, anyway limited by the threshold imposed on the gap
duration.
Movement phase reduction We apply a filter aimed

at leaving out data which describe the movements among
the PoIs a user visits, thus reducing the number of points to
analyze. This way we consider the periods in which a user
stays still in a place, assuming that users manifest their in-
terests by spending an amount of their time in such places.
In order to extract the pause periods and their related GPS
points from the whole individual trace, we apply the heuris-
tic proposed in [14, 13], where a similar but smaller dataset
has been analyzed. If two points pi and pi + 1, with time-
stamps indicated by t(p.), do not satisfy

‖pi+1 − pi‖
t(pi+1)− t(pi)

≤ ∆ (1)

then we delete pi+1 from the original trace, since it belongs
to the movement phase. Analyzing walking mobility data,
we set the threshold to the very low value of ∆ = 1.3m/s,
according to the fact that we observe that human walking
speed is about 4-5 km/h (1.1-1.4 m/s). It seems a reasona-
ble value as generally, in a location, people do not reach the
maximum speed. This way, we capture points where a per-
son is still or is moving very slowly inside a small area. The
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(a) User 3 GPS points

 

(b) Pre-processing results

 

(c) Sub-PoIs issue

 

(d) Compact representation

Figure 2: PoIs extraction applied to the user 3’s trajectories. In 2(a) we plot all the recorded points (raw
data). In 2(b) we show the points resulting from the application of the pre-processing phase. In 2(c) the
sub-PoIs that have to be grouped in the real PoI (yellow circle). In 2(d) a compact representation of user
3’s mobility during a single day.

result of the speed filtering process is a sequence of points
that forms the trajectory S = ((p1, t1), ..., (pn, tn)), where
ti is a timestamp and pi ∈ R2, on which we apply the PoIs
extraction methodology proposed in Section 4.
Users’ selection The point reduction has also effects

on the number of users and the number of days, per user,
from which we can extract places of interest. The reduc-
tion is mainly due to the fact that GeoLife dataset has been
built for the transportation prediction task, and, as a con-
sequence, it flavors movements.

To overcome these limitations, we classify the users con-
sidering two properties: the period (in hours) a single day
trace spans and the number of days the single user traces
cover. In particular, for each user, we only consider the daily
traces that record more than h hours. On these tracks we
count the number of users that have more than d days of
data. In particular, for all the users of the dataset, we fil-
ter out all the days of sampling (data collected within the
24 hours, going form 00:00 AM until 11:59 PM) which have
h ≤ 3 hour of sampling. All the remaining days are consid-
ered relevant days. After this first processing, we filter out
all the user which collected less than 20 relevant days of data
(d = 20): the resulting number of users is 21, over the total
number of 178 users. We apply these values for the users
filter parameters, in order to optimize the trade-off between
the importance of having a large number of users, to be able
to generalize our analysis; and the need to deal with sam-
pled data which does not only correspond to trajectories.
For example, only by increasing of one hour the threshold
h we obtained a number of users that is not enough to our
goal (10). Though the dataset used is a collection of trajec-
tories, hence only a reduced subset of collected data fulfill
our requirements, we are able, also with this small dataset,

to obtain initial but powerful results. Besides, note that
the resulting dataset almost completely spans the original
GeoLife period.

4. POIS EXTRACTION METHODOLOGY
GPS datasets, such the one we are analyzing, present

many difficulties as concerns the PoI extraction task with re-
spect to mobility data inferred from geo-coded or geo-tagged
social networks [1] ( e.g. Foursquare, Facebook Places,. . . ).
In our context we do not have any information about the
interest expressed by the user, but we must rely only on the
periods where a user is still.

Assuming a constant sampling rate, as in our case, the
pause periods and the places visited by users translate in an
higher concentration of recorded points. This way the PoIs
extraction corresponds to the unsupervised task of density-
based clustering. In particular, we are extending the method-
ology proposed in [14], adopting a two-level density-based
clustering combined with a thresholding mechanism based
on pause in the regions extracted from the first clustering
phase.

4.1 Finding PoIs
All the points of a trajectory belong to the pause phase

and are the starting points to extract the PoIs. To reach
this goal, we first find the possible regions of interest via a
clustering algorithm and then we detect the real PoIs con-
sidering the pause time feature.

Formally, we capture the possible regions by introducing
the concept of stay-location L.

Definition 1. Let S be a trajectory and L = {L1, . . . , Lk}
a partition of {p1, . . . , pn} s. t. for each Li ∈ L, Li is
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maximal w.r.t. the property that for each pu, pv ∈ Li ex-
ists a sequence (pu = pw, ..., pw+j = pv) of points in Li,
s.t. ‖pw+k − pw+k+1‖ ≤ δ, k = 0, ..., j − 1 for a fixed δ. A
stay-location is an element of L.

Informally, a stay-location is an area where a person stops,
independently of how long he stays there. Let us consider
individual traces in order to extract stay-locations and ana-
lyze their properties. To find stay-locations we apply the
density-based clustering algorithm DBSCAN [4]. As DB-
SCAN parameters we use δ = 10 mt and ε = 2 neighbors
(δ represents the maximum distance such that two points
are considered neighbors, while ε is the minimum number
of neighbors that a node must have to be considered in a
cluster).

We observe that in daily movements, there are many stay-
locations where an individual stays for a short amount of
time. These stay-locations are meaningless as they represent
small pauses in the movement towards the real destinations
that we call Points of Interest.

Definition 2. Let S be a trajectory and Li ∈ L a stay-
location. Li is a Point of Interest (PoI) if in S there exists
a subsequence ((pi, ti), . . . , (pi+k, ti+k)) such that pi+j ∈ Li

for j = 0, . . . , k and ti+k − ti ≥ φ.

In the following analysis of the dataset we set the thres-
hold φ = 5 min, which corresponds to the mean of the pause
distribution in stay-locations, shown in Figure 1. We must
underline that we do not consider the sum of the pause times
in a stay-location; rather, we consider the single values. The
thresholding results in the meaningful PoIs, although we ob-
serve situations, such that presented in Figure 2(c), where
we have many sub-PoIs of the same general PoI. To over-
come this empass we run a second passage of DBSCAN with
a larger ε on the centroids of the sub-PoIs detecting the real
points of interest. Thus we obtain two important effects:
we drastically reduce the number of stay-locations and can
infer which are the main destinations, the PoIs.

Aside from finding PoIs, the above methodology has the
capability to express human mobility as a compact trace
that summarizes the transitions between PoIs and the users’
pause time in them as shown in Figure 2(d). Adopting this
compact representation in the following section we can ana-
lyze some properties of the human mobility and of the PoIs
human beings visit during their daily movements.

4.2 Relevance
We classify the user’s visited PoIs according to their re-

levance, and then we derive some characterizations of the
user’s mobility within each locations’ class of relevance.

The relevance of a certain location Li has been calculated
on the mobility history of each user, and it is defined as:

relevance(Li) =
dvisit(Li)

dtotal
(2)

where dvisit(Li) is the number of days a location Li has
been visited (one or more times per day) by the user and
dtotal is the total number of sampling days, collected by the
user. The relevance of a certain location is, according to the
formula, the percentage of days the user visit this location,
over the total number of days of sampling.

According to relevance values, we show that the PoIs as-
sociated to each user can be grouped in 3 classes:
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Figure 3: Aggregated and single user classes of PoIs
based on the relevance.

• Mostly Visited PoIs (MVP): locations most fre-
quently visited by the user. We can easily infer their
semantic meaning, and associate them to home loca-
tion, work place, gym.

• Occasionally Visited PoIs (OVP): locations of in-
terest for the user, but visited just occasionally.

• Exceptionally Visited PoIs (EVP): PoIs unlikely
visited more than very few times.

The evaluation of the PoIs’ relevance allows a straight-
forward identification of these three classes (more details in
the next paragraph). In figure 3(a) we show a cumulative
characterization of the PoIs identified for all the users of the
dataset (here we use the complete dataset, without apply-
ing any filter). In the x-axis we identify 10 bins of relevance
spanning form 0% to 100%, where each of them has a width
of 10%. For each class of relevance we show in the figure
the percentage of the average (calculated over all the users)
number of PoIs belonging to the corresponding class. From
the figure, it is easily visible that, on average, 57% of the
PoIs visited by a user are within the EVP relevance class:
this means that more than half of the PoIs seen by each user,
are exceptionally visited PoIs, that the user hardly visits for
multiple times. 6.7% of PoIs can be classified within the
MVP class, which gives an idea of the limited number of
locations which are visited by each user almost daily. The
identification of the upper and lower bounds for each of the
three classes is strictly related to every single user; in fact it
depends on the user’s mobility style.

4.3 Finding class of relevance
As it has been highlighted by the above discussion, rele-

vance class bounds could change among the subjects. As
a consequence, class bounds cannot be fixed a priori but
claim at an automatically detection algorithm able to adapt
to the single user mobility pattern. In particular, we adopt
an unsupervised approach which groups the PoIs of a single
user according to the values of PoI relevance and maximize
their separability. The clustering algorithm we choose is the
k-means with k = 3 which corresponds to the number of PoI
classes. To avoid the problem related to the initial choice
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of the centroids, we run 10 replicas of k-means with dif-
ferent initial seeds and choose the partition that minimizes
the within-cluster sums of point-to-centroid distances, thus
maximizing the separability. In Figure 3(b), we show the re-
sult of the k-means clustering on a sampled user. The EVP
class (purple box) covers the range from 0.01 to 0.12, the
OVP (red box) spans the range from 0.16 to 0.46 and the
MVP class (green line) contains only one PoI with relevance
0.82.

5. RESULTS
In this paragraph we present the experimental results of

our analysis performed over the data after performing the
pre-processing and the analysis of the PoIs and related classes
of relevance, described in the previous sections of the paper.

For each filtered user, we apply the k-mean algorithm (as
explained in paragraph 4.3) to classify the related PoIs in
three main classes of relevance (4.2) and over these classes
we study three main features: (i) the number of PoIs which
reside within each class of relevance, (ii) the percentage of
time spent in each class and (iii) the average time of the
visits to the PoIs of the classes.

In Figure 4 we represent the number of PoIs associated
to each class of relevance, per user. In the upper plot we
can notice the large difference in the number of EVPs, with
respect to the PoIs belonging to the other two classes of rele-
vance (OVPs and MVPs - which can bareley be seen): this
is an evidence of the fact that the user always visits new
locations, but only few of them are visited regularly. In the
lower plot, we zoom on the classes OVPs and MVPs: the
number of OVPs is limited and its average value is 4.19; also
for the MVPs the number per user is limited, and its average
value is 1.76. As expected, each user has a very small num-
ber of preferred locations (MVPs) which are visited daily
(e.g., home, work place), and a higher but still limited num-
ber of location of interest (OVPs) which are visited with a
lower frequency but regularly (e.g., gym, favourite restau-
rant, parent’s house).

Figure 5 shows the average visit time to the PoIs, accord-
ing to their class of relevance. From the figure we notice
that for all users, the average visiting time to EVPs is very
limited and on average lower than one hour. The average
visiting time for OVPs and EVPs depends to the mobility
style of the user: some users tend to spend long time in
their MVPs, other users instead, use to have very long visits
to the OVPs. We will talk about the classification of the
user’s behaviour below in this paragraph. However, consid-
ering the PoIs classification, the MVPs and OVPs can be
considered equally relevant for the user, even if the MVPs
are visited more frequently and more periodically than the
OVPs. The EVPs are instead locations not really important
to the user, and where (according to the figure) it spends on
average a shorter interval of time.

In Figure 6 we represent a cumulative measure of the per-
centage of the total time each user spends visiting PoIs be-
longing to the three different classes of relevance. According
to this figure, a user tends to spend more than half of the
total time in the MVPs and the rest of the time is almost
equally distributed between the EVPs and the OVPs.

The interesting aspect of this feature is further exploited
in Figure 7, where we show the percentage of the visit time
per class, for some users. While always showing the three
classes pattern, the behaviour of the two users radically dif-
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Figure 6: Percentage of the visiting time, per class
of relevance (Cumulative)

fers. The user 69 has a very stay-at-home behaviour: it
spends close to the 81% of the time in the MVPs, and less
than 9% in the EVPs.

As opposite, user 25 is a globetrotter: the percentage of
time spent in the MVPs is below 10% (rounded to 10% in
the figure), and the user spends most of the time in the
EVPs (close to 73%), even if the average time spent in each
EVP is still significantly smaller than the average time spent
in each MVP. This opens for new research approaches to
human mobility based on visited places distribution, and is
matter of ongoing work.

6. CONCLUSION
People visited places are regulated by statistical laws that

tell us that each person visits very few places very frequently
and very few places occasionally. We have experimentally
validated this property on a large dataset and derived 3
classes, the MVPs, OVPs and EVPs, that reflect those laws.
We further extracted a relation between the time spent within
each class and the type of human mobility of the user. Our
future work includes further validation on ad hoc traces, as
well as further elaboration of the human mobility classifi-
cation, considering different timing features (e.g., circadian
rhythm and different seasons).
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Figure 4: Number of PoIs per class of relevance

Figure 7: Different types of user mobility: the glo-
betrotter (user 25) and the stay-at-home (user 69)
behaviour derived by the time and number distribu-
tion of PoIs.
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